Как строить графики логарифмических уравнений

Методика решения логарифмических уравнений

Разделы: Математика

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

(1)

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

(3)

и его решения подставить в систему неравенств

(4),

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

(5)

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х, если

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.

Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.

Пусть ; тогда

Учитывая, что

После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.

Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.

Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.

Пример 7: Решить уравнение

Решение: Построим графики функций и y = x

Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).

Ответ: корней нет

Пример 8: Найти х, если

Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.

Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,

истинно

Докажем, что других корней данное уравнение не имеет.

Эти корни следует искать во множестве значений х.

Допустимые значения х находятся в промежутке

На этом промежутке функция убывает, а функция возрастает. И, значит, если уравнение имеет решение, то оно единственное.

Как строить графики логарифмических уравнений

Логарифмической функцией называется функция вида y = log ax , где a > 0 и a ≠ 1.

График функции имеет следующий вид:

Рассмотрим свойства функции:

  1. Областью определения функции является множество всех положительных чисел D(y) = (0; +∞).
  2. Множеством значений функции являются все действительные числа R.
  3. Наименьшего и наибольшего значений функция не имеет.
  4. Функция не является ни нечетной, ни четной. Имеет общий вид.
  5. Функция непереодическая.
  6. Нули функции: функция пересекает координатную ось Ox в точке (1; 0).
  7. При a > 1 функция возрастает, при 0

Примеры решения задач

Задание 1.

В одной координатной плоскости построить графики функций:

Решение.

Для начала построим график функции y = log2x. Для этого найдем значения функции при x = , , , 1, 2, 4, 8.

x 1248
y(x)-3-2-10123

Отметим полученные точки на координатной плоскости, соединив их плавной линией.

Большему значению аргумента х соответствует и большее значение функции у. Функция y = log2x возрастает на всей области определения D(y)=R+, так как основание функции 2 > 1.

Подобным образом построим графики остальных функций.

Переменная х может принимать только положительные значения (D(y) = R+), при этом значение у может быть любым (E(y) = R).

Графики всех данных функций пересекают ось Оx в точке (0; 1), так как логарифм по любому основанию от единицы равен нулю. C осью Оy графики не пересекаются, так как логарифм по положительному основанию не может быть равен нулю.

Чем больше основание a (если a > 1) логарифмической функции y = logax, тем ближе расположена кривая к оси Оx.

Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.

Задание 2.

В одной координатной плоскости построить графики функций:

Решение.

Для начала построим график функции . Для этого найдем значения функции при x = , , , 1, 2, 4, 8.

x 1248
y(x)3210-1-2-3

Отметим полученные точки на координатной плоскости, соединив их плавной линией.

Большему значению аргумента х соответствует меньшее значение функции y. Функция убывает на всей своей области определения: D(y) = R, так как основание функции 0

Подобным образом построим графики остальных функций.

Переменная х может принимать только положительные значения (D(y) = R+), при этом значение у может быть любым (E(y) = R).

Графики всех данных функций пересекают ось Оx в точке (0; 1), так как логарифм по любому основанию от единицы равен нулю. С осью Оy графики не пересекаются, так как логарифм по положительному основанию не может быть равен нулю.

Чем меньше основание a (если 0

Все данные функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.

Задание 3.

Найти обасть определеления функции:

Решение

Область определения данной функции задается следующим неравенством:

Решим это линейное неравенство:

Логарифм определен, если подлогарифмическая функция является положительной, то есть искомая область определения: D(y): (x-1)(x+5) > 0.

Решим полученное уравнение методом интервалов. Для этого найдем нули каждого из сомножителей:

Наносим их на координатную прямую и определяем знак неравенства на каждом из полученных промежутков.

Поскольку решаем неравенство со знаком «>», то оставляем промежутки со знаком «+», т. е D(y): (-∞; -5)U(1; +∞).

Что такое логарифмическая функция? Определение, свойства, решение задач

Раздел логарифмов занимает огромное значение в школьном курсе «Математического анализа». Задания для логарифмических функций построены на иных принципах, нежели задачи для неравенств и уравнений. Знание определений и основных свойств понятий логарифм и логарифмическая функция, обеспечат успешное решение типовых задач ЕГЭ.

Определение понятия логарифм

Прежде чем приступить к объяснению, что представляет собой логарифмическая функция, стоит обратиться к определению логарифма.

Разберем конкретный пример: а log a x = x, где a › 0, a ≠ 1.

Основные свойства логарифмов можно перечислить несколькими пунктами:

  1. Если a › 1, то для x › 1 logax › 0 и для 0 ‹ x ‹ 1 logax ‹ 0.
  2. Если 0 ‹ а ‹ 1, то для x › 1 logax ‹ 0 и для 0 ‹ x ‹ 1 logax › 0
  3. Если а › 0 и а ≠ 1, то loga1 = 0
  4. Если а › 0 и а ≠ 1, то logaa = 1
  5. Если x1 = x2, то logax1=logax2, где а › 0 и а ≠1
  6. Логарифм произведения равен сумме логарифмов.
  7. Логарифм частного равен разности логарифмов делимого и делителя.
  8. Логарифм степени равен логарифму основания, умноженному на показатель степени.
  9. Основание логарифма можно поменять по формуле:
  10. Если возвести основание и аргумент логарифма в одну и ту же степень, то его значение не измениться.

Логарифмирование

Логарифмированием называют математическую операцию, которая позволяет с помощью свойств понятия найти логарифм числа или выражения.

Функция логарифма и ее свойства

Логарифмическая функция имеет вид

Сразу отметим, что график функции может быть возрастающим при a › 1 и убывающим при 0 ‹ a ‹ 1. В зависимости от этого кривая функции будет иметь тот или иной вид.

Приведем свойства и способ построения графиков логарифмов:

  • область определения f(x) – множество всех положительных чисел, т.е. x может принимать любое значение из интервала (0; + ∞);
  • ОДЗ функции – множество всех действительных чисел, т.е. y может быть равен любому числу из промежутка ( – ∞; +∞);
  • если основание логарифма а › 1, то f(x) возрастает на всей области определения;
  • если основание логарифма 0 ‹ a ‹ 1, то F – убывающая;
  • логарифмическая функция не является ни четной, ни нечетной;
  • кривая графика всегда проходит через точку с координатами (1;0).

Построить обе разновидности графиков очень просто, рассмотрим процесс на примере

Для начала необходимо вспомнить свойства простого логарифма и ее функции. С их помощью нужно построить таблицу для конкретных значений x и y. Затем на координатной оси следует отметить полученные точки и соединить их плавной линией. Эта кривая и будет являться требуемым графиком.

Логарифмическая функция является обратной для показательной функции, заданной формулой y= а x . Чтобы убедиться в этом, достаточно нарисовать обе кривые на одной координатной оси.

Очевидно, что обе линии являются зеркальным отражением друг друга. Построив прямую y = x, можно увидеть ось симметрии.

Для того, чтобы быстро найти ответ задачи нужно рассчитать значения точек для y = log2⁡x, а затем просто перенести начала точки координат на три деления вниз по оси OY и на 2 деления влево по оси OX.

В качестве доказательства построим расчетную таблицу для точек графика y = log2⁡(x+2)-3 и сравним полученные значения с рисунком.

Как видно, координаты из таблицы и точек на графике совпадают, следовательно, перенос по осям был осуществлен правильно.

Примеры решения типовых задач ЕГЭ

Большую часть тестовых задач можно разделить на две части: поиск области определения, указания вида функции по рисунку графика, определение является ли функция возрастающей/убывающей.

Для быстрого ответа на задания необходимо четко уяснить, что f(x) возрастает, если показатель логарифма а › 1, а убывает – при 0 ‹ а ‹ 1. Однако, не только основание, но и аргумент может сильно повлиять на вид кривой функции.

Задание 1

F(x), отмеченные галочкой, являются правильными ответами. Сомнения в данном случае вызывают пример 2 и 3. Знак «-» перед log меняет возрастающую на убывающую и наоборот.

Поэтому график y=-log3⁡x убывает на всей области определения, а y= -log(1/3)⁡x – возрастает, при том, что основание 0 ‹ a ‹ 1.

Ответ: 3,4,5.

Задание 2

Ответ: 4.

Данные типы заданий считаются легкими и оцениваются в 1- 2 балла.

Задание 3.

Определить убывающая или возрастающая ли функция и указать область ее определения.

Так как основание логарифма меньше единицы, но больше нуля – функция от x является убывающей. Согласно свойствам логарифма аргумент также должен быть больше нуля. Решим неравенство:

Ответ: область определения D(x) – интервал (50; + ∞).

Задание 4.

Ответ: 3, 1, оси OX, направо.

Подобные задания классифицируются как средние и оцениваются в 3 – 4 балла.

Задание 5. Найти область значений для функции:

Из свойств логарифма известно, что аргумент может быть только положительным. Поэтому рассчитаем область допустимых значений функции. Для этого нужно будет решить систему из двух неравенств:

Итак, искомый промежуток находится в пределе интервала (-4; 8), при других x становится невозможным вычислить значение одного из данных логарифмических выражений.

Согласно свойствам логарифмической функции сумма логарифмов с одинаковым основанием равна логарифму произведения их аргументов.

Графиком функции y = – x 2 + 4x + 32 является парабола, схематический график которой представлен ниже.

Точка A является экстремумом графика, в ней y принимает наибольшее значение. Координаты точки A (m; n) вычисляются по формулам, приведенным на рисунке. Высчитаем n для заданной параболы.

Наибольшее значение ymax = 36. Так как основание логарифма в примере больше 1, то функция будет возрастающей, и достигнет наибольшего значения при максимальном аргументе. Узнаем максимум для F(y):

Наименьшего значения в конкретном примере нет, поэтому ОДЗ для f(x) = log3⁡(x+4)+ log3⁡(8-x) является следующий интервал (- ∞; 2log36).

Подобные задачи можно отнести к категории «сложно» и оценивать не менее 4 баллов за правильный ответ.


источники:

http://mmf.kubsu.ru/index.php/spravochnik/issledovanie-funktsij/77-logarifmicheskaya-funktsiya

http://karate-ege.ru/logarifmicheskaya-funktsiya/