Как упрощать уравнения в информатике

Упрощение логических выражений

Основная образовательная задача урока – научить учащихся умению упрощать логические выражения, правильно определять порядок выполнения операций в логическом выражении, устанавливать связи между различными частями сложных логических выражений, умение выбирать лучший вариант решения.

Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных.

Обозначим: X – логическое высказывание, – инверсия, & – конъюнкция, – дизъюнкция, – импликация, – эквиваленция.

Применение основных законов логики для упрощения логических выражений.

Представленные примеры демонстрируют основные приемы упрощения логических выражений.

Упростить логическое выражение:

1)

Перепишем выражение с помощью более привычных операций умножения и сложения, определимся с порядком выполнения операций:

Воспользуемся распределительным законом и вынесем за скобки общий множитель, затем операцией переменной с ее инверсией.

Воспользуемся распределительным законом и вынесем за скобки общий множитель, затем операцией переменной с ее инверсией, затем операцией с константами.

2)

Перепишем выражение с помощью более привычных операций умножения и сложения, определимся с порядком выполнения операций. В выражении присутствуют два выражения в скобках, соединенных дизъюнкцией. Сначала преобразуем выражения в скобках.

В первой скобке воспользуемся распределительным законом, во второй скобке – раскроем инверсию по правилу де Моргана и избавимся от инверсии по закону двойного отрицания.

Воспользуемся операцией переменной с ее инверсией.

3)

Перепишем выражение с помощью более привычных операций умножения и сложения, определимся с порядком выполнения операций. В выражении присутствуют два выражения в скобках, соединенных конъюнкцией. Сначала преобразуем выражения в скобках.

Раскроем инверсию по правилу де Моргана, избавимся от инверсии по закону двойного отрицания.

Воспользуемся переместительным законом и поменяем порядок логических сомножителей.

Применим закон склеивания

Воспользуемся распределительным законом, затем операцией переменной с ее инверсией, затем операцией с константами.

4)

Перепишем выражение с помощью более привычных операций умножения и сложения, определимся с порядком выполнения операций.

В выражении присутствует импликация. Сначала преобразуем импликацию .

Воспользуемся правилом де Моргана, затем законом двойного отрицания, затем раскроем скобки.

Применим закон идемпотенции и перегруппируем логические слагаемые.

Воспользуемся распределительным законом и вынесем за скобки общий логический множитель.

Воспользуемся операцией с константами.

5)

Рассмотрим 3 способа упрощения этого логического выражения.

1 способ. Перепишем выражение с помощью более привычных операций умножения и сложения.

Воспользуемся распределительным законом и раскроем скобки, затем операцией переменной с ее инверсией и законом идемпотенции.

Воспользуемся распределительным законом и раскроем скобки, затем операцией переменной с ее инверсией.

Воспользуемся законом идемпотенции.

2 способ. Перепишем выражение с помощью более привычных операций умножения и сложения.

Воспользуемся законом склеивания

Воспользуемся операцией переменной с ее инверсией.

3 способ. Перепишем выражение с помощью более привычных операций умножения и сложения.

Повторим второй сомножитель , что разрешено законом идемпотенции.

Сгруппируем два первых и два последних сомножителя.

Воспользуемся законом склеивания

6)

Рассмотрим 2 способа упрощения этого логического выражения.

1 способ. Перепишем выражение с помощью более привычных операций умножения и сложения, определимся с порядком выполнения операций.

Воспользуемся распределительным законом и вынесем общий логический множитель за скобки.

2 способ. Перепишем выражение с помощью более привычных операций умножения и сложения, определимся с порядком выполнения операций.

Введем вспомогательный логический сомножитель

Сгруппируем 1 и 4, 2 и 3 логические слагаемые. Вынесем общие логические множители за скобки.

Воспользуемся операцией с константами и операцией переменной с ее инверсией.

Получили два логических выражения:

Теперь построим таблицы истинности и посмотрим, правильно ли упрощено логическое выражение

XYZ
0000000
0010000
0100000
0110101
1001001
1011011
1100000
1110011

XYZ
0001000
0011000
0100000
0111011
1001101
1011101
1100000
1111101

XYZ
000000
001000
010000
011011
100101
101101
110000
111011

XYZ
000000
001000
010000
011111
100111
101111
110000
111111

Как видно из сравнения таблиц истинности формулы являются равносильными.

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Преобразование логических выражений

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 20. Преобразование логических выражений

Способ определения истинности логического выражения путём построения его таблицы истинности становится неудобным при увеличении количества логических переменных, т. к. за счёт существенного увеличения числа строк таблицы становятся громоздкими. В таких случаях выполняются преобразования логических выражений в равносильные. Для этого используют свойства логических операций, которые иначе называют законами алгебры логики.

20.1. Основные законы алгебры логики.

Приведём основные законы алгебры логики.

1. Переместительные (коммутативные) законы:

2. Сочетательные (ассоциативные) законы:

(A v В) v С = A v (В v С).

3. Распределительные (дистрибутивные) законы:

A v (В & С) = (A v В) & (A v С).

4. Законы идемпотентности (отсутствия степеней и коэффициентов):

5. Закон противоречия:

6. Закон исключённого третьего:

7. Закон двойного отрицания:

8. Законы работы с константами:

A v 1 = 1; A v O = A;

9. Законы де Моргана:

10. Законы поглощения:

Справедливость законов можно доказать построением таблиц истинности.

Пример 1. Упростим логическое выражение

Последовательно применим дистрибутивный закон и закон исключённого третьего:

Пример 2. Упростим логическое выражение

Аналогичные законы выполняются для операций объединения, пересечения и дополнения множеств. Например:

Пробуйте самостоятельно доказать один из этих законов с помощью кругов Эйлера.

Пример 3. На числовой прямой даны отрезки В = [2; 12] и С = [7; 18]. Каким должен быть отрезок А, чтобы предикат

становился истинным высказыванием при любых значениях х.

Преобразуем исходное выражение, избавившись от импликации:

причём это минимально возможное множество А.

Множество В — это отрезок [2; 12].

Изобразим это графически:

Пересечением этих множеств будет служить промежуток [2; 7[. В качестве ответа мы можем взять этот промежуток, а также любой другой, его включающий.

Чему равна минимальная длина отрезка А? Укажите ещё несколько вариантов множества А.

Пример 4. Для какого наименьшего неотрицательного целого десятичного числа а выражение

тождественно истинно (т. е. принимает значение 1 при любом неотрицательном целом значении десятичной переменной х)? Здесь & — поразрядная конъюнкция двух неотрицательных целых десятичных чисел.

Прежде всего, вспомним, что представляет собой поразрядная конъюнкция двух целых десятичных чисел, например 27 и 22.

Обратите внимание на то, что если в некотором бите хотя бы одного сомножителя есть 0, то 0 есть и в этом бите результата, а 1 в результате получается только тогда, когда в соответствующих битах каждого сомножителя есть 1.

Перепишем исходное выражение в наших обозначениях:

Рассмотрим предикат М(х) = (х & 28 ? 0). В числе 28 = 111002 4-й, 3-й и 2-й биты содержат единицы, а 1-й и 0-й — нули. Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 4, 3 или 2 содержит единицу. Если и 4-й, и 3-й, и 2-й биты числа х нулевые, то высказывание х & 28 ? 0 будет ложным.

Рассмотрим предикат N(x) = (х & 45 ? 0). В числе 45 = 1011012 5-й, 3-й, 2-й и 0-й биты содержат единицы, 4-й и 1-й — нули.

Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 5, 3, 2 или 0 содержит единицу. Если и 5-й, и 3-й, и 2-й, и 0-й биты числа х нулевые, то высказывание х & 45 ? 0 будет ложным.

Рассмотрим предикат К(х) = (х & 17 = 0). В числе 17 = 100012 3-й, 2-й и 1-й биты содержат нули, 4-й и 0-й — единицы. Побитовая конъюнкция 17 и х будет равна нулю, если в числе х 4-й и 0-й биты будут содержать нули. Множество истинности этого предиката — все х с нулями в 4-м и 0-м битах.

По условию задачи надо, чтобы

Запишем это выражение для рассмотренных множеств истинности:

Объединением множеств М и N являются все двоичные числа, у которых хотя бы один из битов с номерами 5, 4, 3, 2, 0 содержит единицу. Пересечением этого множества с множеством К будут все двоичные числа, у которых биты с номерами 4 и 0 будут заняты нулями, т. е. такие двоичные числа, у которых хотя бы один из битов с номерами 5, 3, 2 содержит 1. Все эти числа образуют множество А.

Искомое число а должно быть таким, чтобы при любом неотрицательном целом значении переменной х: х & а ? 0, и кроме того, оно должно быть минимальным из возможных. Этим условиям удовлетворяет число 1011002. Действительно, единицы в нём стоят в тех и только в тех битах, которые нужны для выполнения условия х & а ? 0.

Итак, требуемое число 1011002 или 4410.

Приведите пример такого десятичного числа а, что для него х & а ? 0 при любом неотрицательном целом значении десятичной переменной х, но само число а не является минимально возможным.

Пример 5. Выясним, сколько решений имеет следующая система из двух уравнений:

Конъюнкция истинна тогда и только тогда, когда истинны все образующие её высказывания. Следовательно, каждая из трёх входящих в конъюнкцию импликаций должна быть равна 1.

Начнем строить дерево решений, представив на нём значения переменных х1 и х2 при которых х1 ? х2 = 1.

Продолжим строить дерево решений. Значения переменной х3 будем выбирать такими, чтобы при имеющихся х2 импликация х2 ? х3 оставалась истинной.

То же самое проделаем для переменной х4.

На дереве видно, что рассматриваемое нами уравнение имеет 5 решений — 5 разных наборов значений логических переменных x1, х2, х3, х4, при которых выполняется равенство:

Следовательно, как и первое уравнение, это уравнение имеет 5 решений. Представим их в табличной форме:

Решение исходной системы логических уравнений — это множество различных наборов значений логических переменных х1, х2, х3, х4, у1, у2, у3, у4 таких, что при подстановке каждого из них в систему оба уравнения превращаются в истинные равенства.

Начнём строить такие наборы или двоичные цепочки. Их началом может служить любой из пяти наборов — решений первого уравнения, а концом — любой из пяти наборов — решений второго уравнения. Например, на основе одного из решений первого уравнения можно построить следующие пять решений системы:

Всего мы можем построить 5 • 5 = 25 решений системы.

Вспомните, как называется теорема комбинаторики, которую мы применили для подсчёта количества решений системы.

20.2. Логические функции

Значение любого логического выражения определяется значениями входящих в него логических переменных. Тем самым логическое выражение может рассматриваться как способ задания логической функции.

Совокупность значений п аргументов удобно интерпретировать как строку нулей и единиц длины n. Существует ровно 2 n различных двоичных строк длины n. Так как на каждой такой строке некая функция может принимать значение 0 или 1, общее количество различных булевых функций от n аргументов равно

Для n = 2 существует 16 различных логических функций.

Рассмотрим их подробнее.

С увеличением числа аргументов количество логических функций резко возрастает. Так, для трёх переменных существует 256 различных логических функций! Но изучать их все нет никакой необходимости. Дело в том, что путём преобразований функция любого количества переменных может быть выражена через функции только двух переменных. Более того, можно использовать не все, а лишь некоторые логические функции двух переменных. Например:

1) F2 и F11 (конъюнкция и отрицание второго аргумента);

2) F8 и F13 (дизъюнкция и отрицание первого аргумента);

3) F9 (стрелка Пирса, отрицание дизъюнкции);

4) F15 (штрих Шеффера, отрицание конъюнкции).

Два последних примера говорят о том, что при желании всю алгебру логики можно свести к одной функции! Но чаще всего логические функции записываются в виде логического выражения через отрицание, конъюнкцию и дизъюнкцию.

20.3. Составление логического выражения по таблице истинности и его упрощение

Ранее мы выяснили, что для любого логического выражения можно составить таблицу истинности. Справедливо и обратное: для всякой таблицы истинности можно составить соответствующее ей логическое выражение.

Алгоритм составления логического выражения по таблице истинности достаточно прост. Для этого надо:

1) отметить в таблице истинности наборы переменных, при которых значение логического выражения равно единице;
2) для каждого отмеченного набора записать конъюнкцию всех переменных следующим образом: если значение некоторой переменной в этом наборе равно 1, то в конъюнкцию включаем саму переменную, в противном случае — её отрицание;
3) все полученные конъюнкции связать операциями дизъюнкции.

Пример 6. Имеется следующая таблица истинности:

После выполнения двух первых шагов алгоритма получим:

После выполнения третьего шага получаем логическое выражение:

Попробуем упростить полученное логическое выражение. Прежде всего, вынесем за скобки В — общий сомножитель, имеющийся у всех трёх слагаемых, затем — сомножитель

, а далее используем законы алгебры логики.

САМОЕ ГЛАВНОЕ

Способ определения истинности логического выражения путём построения его таблицы истинности становится неудобным при увеличении количества логических переменных, т. к. за счёт существенного увеличения числа строк таблицы становятся громоздкими. В таких случаях выполняются преобразования логических выражений в равносильные. Для этого используют свойства логических операций, которые иначе называют законами алгебры логики. Аналогичные законы имеют место и в алгебре множеств.

Логическая функция может быть задана с помощью таблицы истинности или аналитически, т. е. с помощью логического выражения.

Для всякой таблицы истинности можно составить соответствующее ей логическое выражение.

Вопросы и задания

Известно, что выражение

истинно при любом значении переменной х. Определите наименьшее возможное количество элементов множества А.

истинно при любом значении переменной х.

Оглавление

§ 20. Преобразование логических выражений

Информатика. 10 класс

Конспект урока

Информатика, 10 класс. Урок № 12.

Тема — Преобразование логических выражений

Перечень вопросов, рассматриваемых в теме: основные законы алгебры логики, преобразование логических выражений, логические функции, построение логического выражения с данной таблицей истинности и его упрощение, дизъюнктивная и конъюнктивная нормальная форма, совершенная дизъюнктивная нормальная форма (СДНФ), совершенная конъюнктивная нормальная форма (СКНФ).

Глоссарий по теме: основные законы алгебры логики, логические функции, дизъюнктивная и конъюнктивная нормальная форма, совершенная дизъюнктивная нормальная форма (СДНФ), совершенная конъюнктивная нормальная форма (СКНФ)

Основная литература по теме урока:

Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса

— М.: БИНОМ. Лаборатория знаний, 2017 (с.197—209)

Открытые электронные ресурсы по теме:

Теоретический материал для самостоятельного изучения.

Способ определения истинности логического выражения путем построения его таблицы истинности становится неудобным при увеличении количества логических переменных, т.к. за счет существенного увеличения числа строк таблицы становятся громоздкими. В таких случаях выполняются преобразования логических выражений в равносильные. Для этого используют свойства логических операций, которые иначе называют законами алгебры логики.

Основные законы алгебры логики

Справедливость законов можно доказать построением таблиц истинности.

Пример 1. Упростим логическое выражение

Последовательно применим дистрибутивный закон и закон исключенного третьего:

В общем случае можно предложить следующую последовательность действий:

  1. Заменить операции строгая дизъюнкция, импликация, эквиваленция на их выражения через операции конъюнкция, дизъюнкция, инверсия;
  2. Раскрыть отрицания сложных выражений по законам де Моргана.
  3. Используя законы алгебры логики, упростить выражение.

Пример 2. Упростим логическое выражение .

Здесь последовательно использованы замена операции импликация, закон де Моргана, распределительный закон, закон противоречия и операция с константой, закон идемпотентности и поглощения.

Аналогичные законы выполняются для операции объединения, пересечения и дополнения множеств. Например:

Пример 3. На числовой прямой даны отрезки B = [2;12] и C = [7;18]. Каким должен быть отрезок A, чтобы предикат становился истинным высказыванием при любых значениях x.

Преобразуем исходное выражение, избавившись от импликации:

A, B, C — множества. Для них можно записать (U — универсальное множество).

Будем считать, что.

Тогда , причем это минимально возможное множество А.

Так как множество B — это отрезок [2;12], а множество — это промежутки и, то пересечением этих множеств будет служить промежуток . В качестве ответа мы можем взять этот промежуток, а также любой другой, его включающий.

Пример 4. Для какого наименьшего неотрицательного целого десятичного числа а выражение

тождественно истинно (т. е. принимает значение 1 при любом неотрицательном целом значении десятичной переменной х)? Здесь & — поразрядная конъюнкция двух неотрицательных целых десятичных чисел.

Перепишем исходное выражение в наших обозначениях и преобразуем его:

Рассмотрим предикат . В числе 2810=111002 4-й, 3-й и 2-й биты содержат единицы, а 1-й и 0-й — нули. Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 4, 3 или 2 содержит единицу. Если и 4-й, и 3-й, и 2-й биты числа х нулевые, то высказывание будет ложным.

Рассмотрим предикат . В числе 4510=1011012 5-й, 3-й, 2-й и 0-й биты содержат единицы, 4-й и 1-й — нули. Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 5, 3, 2 или 0 содержит единицу. Если и 5-й, и 3-й, и 2-й, и 0-й биты числа х нулевые, то высказывание будет ложным.

Рассмотрим предикат . В числе 1710=100012 3-й, 2-й и 1-й биты содержат нули, 4-й и 0-й — единицы. Побитовая конъюнкция 17 и х будет равна 0, если в числе х 4-й и 0-й биты будут содержать нули. Множество истинности этого предиката — все х с нулями в 4-м и 0-м битах.

По условию задачи надо, чтобы .

Запишем это выражение для рассмотренных множеств истинности:

Так как , примем .

Объединением множеств M и N являются все двоичные числа, у которых хотя бы один из битов с номерами 5, 4, 3, 2, 0 содержит единицу. Пересечением этого множества с множеством K будут все двоичные числа, у которых биты с номерами 4 и 0 будут заняты нулями, т.е. такие двоичные числа, у которых хотя бы один из битов с номерами 5, 3, 2 содержит 1. Все эти числа образуют множество А.

Искомое число a должно быть таким, чтобы при любом неотрицательном целом значении переменной х: , и, кроме того, оно должно быть минимальным из возможных. Этим условиям удовлетворяет число 1011002 = 4410.

Значение любого логического выражения определяется значениями входящих в него логических переменных. Тем самым логическое выражение может рассматриваться как способ задания логической функции.

Совокупность значений n аргументов удобно интерпретировать как строку нулей и единиц длины n. Существует ровно различных двоичных строк длины n. Так как на каждой такой строке некая функция может принимать значение 0 или 1, общее количество различных булевых функций от n аргументов равно .

Для n=2 существует 16 различных логических функций. Рассмотрим их подробнее.


источники:

http://murnik.ru/preobrazovanie-logicheskih-vyrazhenij

http://resh.edu.ru/subject/lesson/4714/conspect/