Как установить какие линии определяются следующими уравнениями

Задание 5. Установить, какая линия определяется уравнением

Установить, какая линия определяется уравнением

.

Чтобы установить тип линии второго порядка, необходимо свести ее уравнение к каноническому виду. Для этого сначала с помощью поворота осей избавляются от слагаемого, содержащего произведение xy.

Так как в данном уравнении такого слагаемого нет, то переходим к следующему шагу. Это избавление от первых степеней тех переменных, квадраты которых присутствуют в уравнении. Аналитически это делаем как выделение полного квадрата:

.

Графически избавление от первых степеней проводится с помощью параллельного переноса. Для этого воспользуемся формулами преобразования координат

и . Новым началом координат будет точка .

В новых координатах уравнение кривой примет вид: .

Таким образом, данная кривая является эллипсом, фокусы которого лежат на оси , большая полуось и малая полуось . Сделаем чертеж.

Ответ: эллипс.

Дата добавления: 2015-02-10 ; просмотров: 4 ; Нарушение авторских прав

§ 9. Понятие уравнения линии. Задание линии при помощи уравнения

§ 9. Понятие уравнения линии. Задание линии при помощи уравнения

§ 9. Понятие уравнения линии.

Задание линии при помощи уравнения

Равенство вида F(x, y) = 0 называется уравнением с двумя переменными x, у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа x = x0, у=у0, удовлетворяют некоторому уравнению вида F(х, у)=0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(х, у) = 0» мы часто будем говорить короче: дана линия F (х, у) = 0.

Если даны уравнения двух линий F (х, у) = 0 и Ф(х, y) = Q, то совме­стное решение системы

даёт все точки их пересечения. Точнее, каждая пара чисел, являющаяся сов­местным решением этой системы, определяет одну из точек пересечения.

*) В тех случаях, когда система координат не названа, подразумевается, что она — декартова прямоугольная.

157. Даны точки *) M1(2; — 2), M 2(2; 2), M 3(2; — 1), M 4(3; —3), M5(5; —5), M6(3; —2). Установить, какие изданных точек лежат на линии, определённой уравнением х + у = 0, и какие не лежат на ней. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

158. На линии, определённой уравнением х2+y2 =25, найти точки, абсциссы которых равны следующим числам: а) 0, б) — 3, в) 5, г) 7; на этой же линии найти точки, ординаты которых равны следующим числам: д) 3, е) — 5, ж) — 8. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

159. Установить, какие линии определяются следующими уравне­ниями (построить их на чертеже):

1) х — у = 0; 2) х + у = 0; 3) x — 2 = 0; 4) x + 3 = 0;

5) у — 5 = 0; 6) y + 2 = 0; 7) x = 0; 8) y = 0;

9) x2 — xy = 0; 10) xy + y2 = 0; 11) x2 — y2 = 0; 12) xy = 0;

13) y2 — 9 = 0; 14) xy2 — 8 xy +15 = 0; 15) y2+5y+4 = 0;

26) (х — 1)2 + y2 = 4; 27) x2 +( y + 3)2 = 1; 28) ( x —3)2 + y 2 = 0;

29) х2 + 2y2 = 0; 30) 2 х2 + 3y2 + 5 = 0

Определить, какие из них проходят через начало координат.

3) (x + 6)2 + (y — 3)2 = 25; 4) (x + 5)2 + (y — 4)2 = 9;

Найти точки их пересечения: а) с осью Ох; б) с осью Оу.

162. Найти точки пересечения двух линий;

163. В полярной системе координат даны точки

М1 (1; ), М2(2; 0), М3(2; )

М4 (; ) и М5(1; )

Установить, какие из этих точек лежат на линии, определённой уравнением в полярных координатах r = 2 cos q , и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить её на чертеже:)

164. На линии, определённой уравнением r = , найти точки, полярные углы которых равны следующим числам: а) ,б) —, в) 0, г) . Какая линия определена данным уравнением?

(Построить её на чертеже.)

165. На линии, определённой уравнением r = , найти точки, полярные радиусы которых равны следующим числам: а) 1, б) 2,в) . Какая линия определена данным уравнением? (Построить её на чертеже.)

166. Установить, какие линии определяются в полярных коор­динатах следующими уравнениями (построить их на чертеже):

1) r = 5; 2) q = ; 3) q = ; 4) r cos q = 2; 5) r sin q = 1;

6) r = 6 cos q ; 7) r = 10 sin q ; 8) sin q = 9) sin r =

167. Построить на чертеже следующие спирали Архимеда:

1) r = 5, 2) r = 5 q ; 3) r = ; 4)р = -1.

168. Построить на чертеже следующие гиперболические спирали:

1) r = ; 2) r = ; 3) r = ; 4) r = —.

169. Построить на чертеже следующие логарифмические спирали:

, .

170. Определить длины отрезков, на которые рассекает спиральАрхимеда

луч, выходящий из полюса и наклонённый к полярной оси под углом . Сделать чертёж.

171. На спирали Архимеда взята точка С, полярный радиус которой равен 47. Определить, на сколько частей эта спираль рассекает полярный радиус точки С, Сделать чертёж.

172. На гиперболической спирали найти точку Р, полярный радиус которой равен 12. Сделать чертёж.

173. На логарифмической спиралинайти точку Q, полярный радиус которой равен 81. Сделать чертёж.

Установить какие кривые определяются следующими уравнениями

I. Установить, какие кривые определяются нижеследующими уравнениями. Построить чертеж.

4х 2 +9у 2 +16х-18у-119=0

Решение. Приведем к каноническому виду данные кривые:

Введем новую систему координат:

Это каноническое уравнение эллипса.

График приведен на рисунке 1.

II. Написать уравнение плоскости, проходящей через точку А перпендикулярно вектору ВС.

Решение. ВС будет вектором нормали (т.е. вектором перпендикулярным плоскости), а уравнение имеет вид: a(х-х )+b(у-у )+c(z-z )=0 где a,b,c координаты вектора ВС (в нашем случае это (-4;1;4) ), а х ,у ,z координаты точки через которую походит плоскость, в нашем случае это точка А. Подставляем и получим:

Раскроем скобки и получим:

III. Найти угол между плоскостями.

Решение. Угол между плоскостями находится по формуле:

где А, В и С – направляющие вектора наших плоскостей. В нашем случае

Направляющие вектора будут: (1,2,2) и (2,-1,2). Тогда

Выполните над матрицами указанные действия: 2В-3АС

Решение. Будем выполнять действия по частям, сначала найдем 2В

Теперь найдем К=АС

Вычислим элементы матрицы |К|:

к1,1 = 4 * 1 + 6 * 1 + 5 * 1 = 4 + 6 + 5 = 15

к1,2 = 4 * 4 + 6 * 4 + 5 * 3 = 16 + 24 + 15 = 55

к1,3 = 4 * 3 + 6 * 2 + 5 * 1 = 12 + 12 + 5 = 29

к2,1 = 2 * 1 + 4 * 1 + 1 * 1 = 2 + 4 + 1 = 7

к2,2 = 2 * 4 + 4 * 4 + 1 * 3 = 8 + 16 + 3 = 27

к2,3 = 2 * 3 + 4 * 2 + 1 * 1 = 6 + 8 + 1 = 15

к3,1 = 2 * 1 + 1 * 1 + 0 * 1 = 2 + 1 + 0 = 3

к3,2 = 2 * 4 + 1 * 4 + 0 * 3 = 8 + 4 + 0 = 12

к3,3 = 2 * 3 + 1 * 2 + 0 * 1 = 6 + 2 + 0 = 8

Результирующая матрица |АС|:

II. Решить систему линейных уравнений:

  • – по формулам Крамера;
  • – матричным способом;
  • – методом Гаусса.

По формулах Крамера. Запишем систему в виде:

? = 3 * (-3 * 3-(-1 * 4))-2 * (1 * 3-(-1 * (-5)))+5 * (1 * 4-(-3 * (-5))) = -66 = -66

Заменим 1-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.

Заменим 2-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.

?2 = 3 * (-4 * 3-(-4 * 4))-2 * (-6 * 3-(-4 * (-5)))+5 * (-6 * 4-(-4 * (-5))) = -132

Заменим 3-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.

Выпишем отдельно найденные переменные Х

Проверка.

Матричным способом. Запишем матрицу в виде:

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые второго порядка: приведение к каноническому виду, нахождение характеристик, построение графика т.п.

Кривые 2-го порядка: решения онлайн

Задача 1. Привести к каноническому виду уравнение кривой 2 порядка, найти все ее параметры, построить кривую.

Задача 2. Дана кривая. Привести к каноническому виду. Построить и определить вид кривой.

Задача 3. Выяснить вид кривой по общему уравнению, найти её параметры и положение в системе координат. Сделать рисунок.

Задача 4. Общее уравнение кривой второго порядка привести к каноническому. Найти координаты центра, координаты вершин и фокусов. Написать уравнения асимптот и директрис. Построить линии на графики, отметить точки.

Задача 5. Дана кривая $y^2+6x+6y+15=0$.
1. Докажите, что данная кривая – парабола.
2. Найдите координаты ее вершины.
3. Найдите значения ее параметра $р$.
4. Запишите уравнение ее оси симметрии.
5. Постройте данную параболу.

Задача 6. Дана кривая $5x^2+5y^2+6xy-16x-16y=16$.
1. Докажите, что эта кривая – эллипс.
2. Найдите координаты центра его симметрии.
3. Найдите его большую и малую полуоси.
4. Запишите уравнение фокальной оси.
5. Постройте данную кривую.

Задача 7. Найти уравнения параболы и её директрисы, если известно, что парабола имеет вершину в начале координат и симметрична относительно оси $Ox$ и что точка пересечения прямых $y=x$ и $x+y-2=0$ лежит на параболе.

Задача 8. Составить уравнение кривой, для каждой точки которой отношение расстояния до точки $F(0;10)$ к расстоянию до прямой $x=-4$ равно $sqrt $. Привести это уравнение к каноническому виду и определить тип кривой.

Задача 9. Даны уравнения асимптот гиперболы $y=pm 5x/12$ и координаты точки $M(24,5)$, лежащей на гиперболе. Составить уравнение гиперболы.

Задача 10. Даны уравнение параболы $y=1/4 x^2+1$ и точка $C(0;2)$, которая является центром окружности. Радиус окружности $r=5$.
Требуется найти
1) точки пересечения параболы с окружностью
2) составить уравнение касательной и нормали к параболе в точках её пересечения с окружностью
3) найти острые углы, образуемые кривыми в точках пересечения. Чертёж.

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ1=-2, λ2=8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
x 2=(1,1); .
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 – 20 = 0.
Решение.Пример 2

Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение

Задание. Привести уравнение к каноническому виду: 16x 2 – 9y 2 -64x – 8y +199 = 0.
Решение.Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение


источники:

http://pandia.ru/text/79/498/10641.php

http://4systems.ru/inf/ustanovit-kakie-krivye-opredeljajutsja/

Читайте также:
  1. В ЧЕМ ЗАКЛЮЧАЕТСЯ ПРОИЗВОДСТВЕННОЕ ЗАДАНИЕ
  2. Дать задание самостоятельно развести характеристики житейской психологии и научной.
  3. Дать задание – распределить этапы развития психологии как науки по очередности их следования друг за другом.
  4. Договор на оценку и задание на оценку. Понятие объекта оценки.
  5. Домашнее задание
  6. Домашнее задание
  7. Домашнее задание (ДЗ), Контрольная работа (КР) № 1 для студентов дневной и вечерней формы обучения и для студентов заочной формы обучения
  8. Домашнее задание на период карантина для 7 А класса
  9. Домашнее задание на период карантина для 7 Б класса
  10. Домашнее задание.