Как узнать уравнение параболы по трем точкам

Как вычислить вершину параболы с учетом трех точек

У меня есть три точки X/Y, которые образуют параболу. Мне просто нужно вычислить, что такое вершина параболы, которая проходит через эти три точки. Предпочтительно быстрый способ, так как я должен сделать много этих вычислений!

веб-сайт «спросите ученого» предоставляет ответ:

общая форма параболы задается уравнением: A * x^2 + B * x + C = y, где A, B и C-произвольные вещественные константы. У вас есть три пары очков это (x,y) упорядоченные пары. Подставить значения X и y каждой точки в уравнение параболы. Вы получите три линейных уравнения в трех неизвестных, три константы. Затем вы можете легко решить эту систему из трех уравнений для значений A, B и C, и у вас будет уравнение параболы, которая пересекает ваши 3 точки. Вершина, где первая производная равна 0, небольшая алгебра дает: (- B/2A , C-B^2/4A ) для вершины.

будет приятно видеть фактический код, который делает этот расчет в C# или c++. Кто-нибудь?

9 ответов

это действительно просто простая задача линейной алгебры, поэтому вы можете сделать расчет символически. Когда вы подставляете значения x и y ваших трех точек, вы получите три линейных уравнения в трех неизвестных.

простой способ решить эту проблему-инвертировать матрицу

и умножьте его на вектор

результатом этого является. ладно, не совсем все так просто 😉 я сделал это в Mathematica, и вот формулы в псевдокоде:

альтернативно, если вы хотите сделать математику матрицы численно, вы обычно обращаетесь к системе линейной алгебры (например,атлас, хотя я не уверен, имеет ли он привязки C#/C++).

спасибо Дэвид, я преобразовал ваш псевдокод в следующий код c#:

Это то, что я хотел. Простой расчет вершины параболы. Я буду обрабатывать переполнение integer позже.

вы получаете следующие три уравнения прямой подстановкой:

Вы можете решить эту проблему, отметив, что это эквивалентно матрице продукта:

таким образом,Вы можете получить A, B и C, перевернув матрицу и умножив обратную с вектором справа.

Я вижу, что, пока я публикую это, Джон Раш связан с учебником, который углубляется в фактическое решение матричного уравнения, поэтому вы можете следовать этим инструкции, чтобы получить ответ. Инвертировать матрицу 3×3 довольно легко, поэтому это не должно быть слишком сложно.

вот код в Fortran, который реализует решение @david-z и @AZDean:

Это пахнет как домашнее задание. «Спросите ученого» — это правильно. Скажем, ваши 3 точки: (x1, y1), (x2, y2) и (x3, y3). Затем вы получаете три линейных уравнения:

Где M11 = x1 2 , M12 = x1, M13 = 1, Z1 = y1, и аналогично для двух других строк, используя (x2, y2) и (x3, y3) вместо (x1, y1).

решение этой системы из 3 уравнения даст вам решение для A, B и C.

Я сделал что-то похожее на ответ @piSHOCK, также основанный на коде @AZDean. Если вам нужно запустить его сильно (или использовать его в MATLAB, как я), это может быть самый быстрый.

мое предположение, что x1 == -1, x2 == 0, x3 == 1 .

Уравнение по трем точкам: как найти вершину параболы, формула

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье.

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая параллельная оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы. Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

(1).

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

(2).

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Это интересно! Первый признак равенства треугольников: доказательство

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

(3).

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

(4).

Это интересно! Что такое деление с остатком: примеры для ребенка в 3, 4 классе

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

.

Отсюда можно сделать вывод, что в случае если а Чему равна и как найти площадь равностороннего треугольника

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

(5.1).

(5.2).

(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А (, B (, C (. Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

(6).

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Это интересно! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10; 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Получается, что координаты на вершине, в точке О, следующие (-1,25; -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2;3), B (3;5), C (6;2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Используя полученные значения, получим следующие уравнение:

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a 1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c>0, то парабола «ползет» вверх, в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Если коэффициент b>0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

[stop]Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.[/stop]

Полезное видео: как найти вершину параболы

Полезное видео: как легко составить уравнение параболы из графика

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

Как определить a, b и c по графику параболы

Предположим, вам попался график функции \(y=ax^2+bx+c\) и нужно по этому графику определить коэффициенты \(a\), \(b\) и \(c\). В этой статье я расскажу 3 простых способа сделать это.

1 способ – ищем коэффициенты на графике

Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью \(y\) – целые числа. Если это не так, советую использовать способ 2.

Коэффициент \(a\) можно найти с помощью следующих фактов:

— Если \(a>0\), то ветви параболы направленных вверх, если \(a 1\), то график вытянут вверх в \(a\) раз по сравнению с «базовым» графиком (у которого \(a=1\)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.

Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:

Выписываем координаты этих точек и подставляем в формулу квадратичной функции: \(y=ax^2+bx+c\). Получится система с тремя уравнениями.

Решаем систему.
Пример:

Вычтем из второго уравнения первое:

Подставим \(9a\) вместо \(b\):

Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки \(A\) и \(B\) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:

Подставим в первое уравнение \(a\):

Получается квадратичная функция: \(y=-x^2-9x-15\).

Сразу заметим, что по графику можно сразу определить, что \(c=4\). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: \(C(-1;8)\), \(D(1;2)\) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).

Таким образом имеем систему:

Сложим 2 уравнения:

Подставим во второе уравнение:

Теперь найдем точки пересечения двух функций:

Теперь можно найти ординату второй точки пересечения:

3 способ – используем преобразование графиков функций

Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.

Главный недостаток этого способа — вершина должна иметь целые координаты.

Сам способ базируется на следующих идеях:

График \(y=-x^2\) симметричен относительно оси \(x\) графику \(y=x^2\).

– Если \(a>1\) график \(y=ax^2\) получается растяжением графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.
– Если \(a∈(0;1)\) график \(y=ax^2\) получается сжатием графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.

– График \(y=a(x+d)^2\) получается сдвигом графика \(y=ax^2\) влево на \(d\) единиц.
— График \(y=a(x-d)^2\) получается сдвигом графика \(y=ax^2\) вправо на \(d\) единиц.

График \(y=a(x+d)^2+e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вверх.
График \(y=a(x+d)^2-e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вниз.

У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:

Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому \(a=1\). То есть она получена перемещениями графика базовой параболы \(y=x^2\).

А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на \(4\).

То есть наша функция выглядит так: \(y=(x-5)^2-4\).
После раскрытия скобок и приведения подобных получаем искомую формулу:

Чтобы найти \(f(6)\), надо сначала узнать формулу функции \(f(x)\). Найдем её:

Парабола растянута на \(2\) и ветви направлены вниз, поэтому \(a=-2\). Иными словами, первоначальной, перемещаемой функцией является функция \(y=-2x^2\).

Парабола смещена на 2 клеточки вправо, поэтому \(y=-2(x-2)^2\).

Парабола поднята на 4 клеточки вверх, поэтому \(y=-2(x-2)^2+4\).


источники:

http://uchim.guru/matematika/uravnenie-po-trem-tochkam-kak-najti-vershinu-paraboly-formula.html

http://cos-cos.ru/ege/zadacha203/378/