Как узнать знаменатель дроби в уравнении

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 \ ( x + 4 ) x — 2 — 3 \ ( x — 2 ) x + 4 — 1 \ ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 \ 1 x ( x — 2 ) — x \ x x — 2 — 3 \ ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 \ 1 x — 3 — x \ ( x — 3 ) — 2 \ ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 \ ( x + 2 ) x — 2 — 3 \ ( x — 2 ) x + 2 — 20 \ 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Наименьший общий знаменатель (НОЗ) алгебраических дробей, его нахождение

Большинство действий с алгебраическими дробями, такие, например, как сложение и вычитание, требуют предварительного приведения этих дробей к одинаковым знаменателям. Такие знаменатели также часто обозначаются словосочетанием «общий знаменатель». В данной теме мы рассмотрим определение понятий «общий знаменатель алгебраических дробей» и «наименьший общий знаменатель алгебраических дробей (НОЗ)», рассмотрим по пунктам алгоритм нахождения общего знаменателя и решим несколько задач по теме.

Общий знаменатель алгебраических дробей

Если говорить про обыкновенные дроби, то общим знаменателем является такое число, которое делится на любой из знаменателей исходных дробей. Для обыкновенных дробей 1 2 и 5 9 число 36 может быть общим знаменателем, так как без остатка делится на 2 и на 9 .

Общий знаменатель алгебраических дробей определяется похожим образом, только вместо чисел используются многочлены, так как именно они стоят в числителях и знаменателях алгебраической дроби.

Общий знаменатель алгебраической дроби – это многочлен, который делится на знаменатель любой из дробей.

В связи с особенностями алгебраических дробей, речь о которых пойдет ниже, мы чаще будем иметь дело с общими знаменателями, представленными в виде произведения, а не в виде стандартного многочлена.

Многочлену, записанному в виде произведения 3 · x 2 · ( x + 1 ) , соответствует многочлен стандартного вида 3 · x 3 + 3 · x 2 . Этот многочлен может быть общим знаменателем алгебраических дробей 2 x , — 3 · x · y x 2 и y + 3 x + 1 , в связи с тем, что он делится на x , на x 2 и на x + 1 . Информация о делимости многочленов есть в соответствующей теме нашего ресурса.

Наименьший общий знаменатель (НОЗ)

Для заданных алгебраических дробей количество общих знаменателей может быть бесконечное множество.

Возьмем для примера дроби 1 2 · x и x + 1 x 2 + 3 . Их общим знаменателем является 2 · x · ( x 2 + 3 ) , как и − 2 · x · ( x 2 + 3 ) , как и x · ( x 2 + 3 ) , как и 6 , 4 · x · ( x 2 + 3 ) · ( y + y 4 ) , как и − 31 · x 5 · ( x 2 + 3 ) 3 , и т.п.

При решении задач можно облегчить себе работу, используя общий знаменатель, который среди всего множества знаменателей имеет самый простой вид. Такой знаменатель часто обозначается как наименьший общий знаменатель.

Наименьший общий знаменатель алгебраических дробей – это общий знаменатель алгебраических дробей, который имеет самый простой вид.

К слову, термин «наименьший общий знаменатель» не является общепризнанным, потому лучше ограничиваться термином «общий знаменатель». И вот почему.

Ранее мы сфокусировали ваше внимание на фразе «знаменатель самого простого вида». Основной смысл этой фразы следующий: на знаменатель самого простого вида должен без остатка делиться любой другой общий знаменатель данных в условии задачи алгебраических дробей. При этом в произведении, которое является общим знаменателем дробей, можно использовать различные числовые коэффициенты.

Возьмем дроби 1 2 · x и x + 1 x 2 + 3 . Мы уже выяснили, что проще всего работать нам будет с общим знаменателем вида 2 · x · ( x 2 + 3 ) . Также общим знаменателем для этих двух дробей может быть x · ( x 2 + 3 ) , который не содержит числового коэффициента. Вопрос в том, какой из этих двух общих знаменателей считать наименьшим общим знаменателем дробей. Однозначного ответа нет, потому правильнее говорить просто об общем знаменателе, а в работу брать тот вариант, с которым работать будет удобнее всего. Так, мы можем использовать и такие общие знаменатели как x 2 · ( x 2 + 3 ) · ( y + y 4 ) или − 15 · x 5 · ( x 2 + 3 ) 3 , которые имеют более сложный вид, но проводить с ними действия может быть сложнее.

Нахождение общего знаменателя алгебраических дробей: алгоритм действий

Предположим, что у нас имеется несколько алгебраических дробей, для которых нам необходимо отыскать общий знаменатель. Для решения этой задачи мы можем использовать следующий алгоритм действий. Сначала нам необходимо разложить на множители знаменатели исходных дробей. Затем мы составляем произведение, в которое последовательно включаем:

  • все множители из знаменателя первой дроби вместе со степенями;
  • все множители, присутствующие в знаменателе второй дроби, но которых нет в записанном произведении или их степень недостаточно;
  • все недостающие множители из знаменателя третьей дроби, и так далее.

Полученное произведение и будет общим знаменателем алгебраических дробей.

В качестве множителей произведения мы можем взять все знаменатели дробей, данных в условии задачи. Однако множитель, который мы получим в итоге, по смыслу будет далек от НОЗ и использование его будет иррациональным.

Определите общий знаменатель дробей 1 x 2 · y , 5 x + 1 и y — 3 x 5 · y .

Решение

В данном случае у нас нет необходимости раскладывать знаменатели исходных дробей на множители. Потому начнем применять алгоритм с составления произведения.

Из знаменателя первой дроби возьмем множитель x 2 · y , из знаменателя второй дроби множитель x + 1 . Получаем произведение x 2 · y · ( x + 1 ) .

Знаменатель третьей дроби может дать нам множитель x 5 · y , однако в составленном нами ранее произведении уже есть множители x 2 и y . Следовательно, добавляем еще x 5 − 2 = x 3 . Получаем произведение x 2 · y · ( x + 1 ) · x 3 , которое можно привести к виду x 5 · y · ( x + 1 ) . Это и будет наш НОЗ алгебраических дробей.

Ответ: x 5 · y · ( x + 1 ) .

Теперь рассмотрим примеры задач, когда в знаменателях алгебраических дробей есть целые числовые множители. В таких случаях мы также действуем по алгоритму, предварительно разложив целые числовые множители на простые множители.

Найдите общий знаменатель дробей 1 12 · x и 1 90 · x 2 .

Решение

Разложив числа в знаменателях дробей на простые множители, получаем 1 2 2 · 3 · x и 1 2 · 3 2 · 5 · x 2 . Теперь мы можем перейти к составлению общего знаменателя. Для этого из знаменателя первой дроби возьмем произведение 2 2 · 3 · x и добавим к нему множители 3 , 5 и x из знаменателя второй дроби. Получаем 2 2 · 3 · x · 3 · 5 · x = 180 · x 2 . Это и есть наш общий знаменатель.

Ответ: 180 · x 2 .

Если внимательно посмотреть на результаты двух разобранных примеров, то можно заметить, что общие знаменатели дробей содержат все множители, присутствующие в разложениях знаменателей, причем если некоторый множитель имеется в нескольких знаменателях, то он берется с наибольшим из имеющихся показателей степени. А если в знаменателях имеются целые коэффициенты, то в общем знаменателе присутствует числовой множитель, равный наименьшему общему кратному этих числовых коэффициентов.

В знаменателях обеих алгебраических дробей 1 12 · x и 1 90 · x 2 есть множитель x . Во втором случае множитель x возведен в квадрат. Для составления общего знаменателя это множитель нам необходимо взять в наибольшей степени, т.е. x 2 . Других множителей с переменными нет. Целые числовые коэффициенты исходных дробей 12 и 90 , а их наименьшее общее кратное равно 180 . Получается, что искомый общий знаменатель имеет вид 180 · x 2 .

Теперь мы можем записать еще один алгоритм нахождения общего множителя алгебраических дробей. Для этого мы:

  • раскладываем знаменатели всех дробей на множители;
  • составляем произведение всех буквенных множителей (при наличии множителя в нескольких разложениях, берем вариант с наибольшим показателем степени);
  • добавляем НОК числовых коэффициентов разложений к полученному произведению.

Приведенные алгоритмы равноценны, так что использовать в решении задач можно любой из них. Важно уделять внимание деталям.

Встречаются случаи, когда общие множители в знаменателях дробей могут быть незаметны за числовыми коэффициентами. Здесь целесообразно сначала вынести числовые коэффициенты при старших степенях переменных за скобки в каждом из множителей, имеющихся в знаменателе.

Какой общий знаменатель имеют дроби 3 5 — x и 5 — x · y 2 2 · x — 10 .

Решение

В первом случае за скобки необходимо вынести минус единицу. Получаем 3 — x — 5 . Умножаем числитель и знаменатель на — 1 для того, чтобы избавиться от минуса в знаменателе: — 3 x — 5 .

Во втором случае за скобку выносим двойку. Это позволяет нам получить дробь 5 — x · y 2 2 · x — 5 .

Очевидно, что общий знаменатель данных алгебраических дробей — 3 x — 5 и 5 — x · y 2 2 · x — 5 это 2 · ( x − 5 ) .

Ответ: 2 · ( x − 5 ) .

Данные в условии задачи дроби могут иметь дробные коэффициенты. В этих случаях необходимо сначала избавиться от дробных коэффициентов путем умножения числителя и знаменателя на некоторое число.

Упростите алгебраические дроби 1 2 · x + 1 1 14 · x 2 + 1 7 и — 2 2 3 · x 2 + 1 1 3 , после чего определите их общий знаменатель.

Решение

Избавимся от дробных коэффициентов, умножив числитель и знаменатель в первом случае на 14 , во втором случае на 3 . Получаем:

1 2 · x + 1 1 14 · x 2 + 1 7 = 14 · 1 2 · x + 1 14 · 1 14 · x 2 + 1 7 = 7 · x + 14 x 2 + 2 и — 2 2 3 · x 2 + 1 1 3 = 3 · — 2 3 · 2 3 · x 2 + 4 3 = — 6 2 · x 2 + 4 = — 6 2 · x 2 + 2 .

После проведенных преобразований становится понятно, что общий знаменатель – это 2 · ( x 2 + 2 ) .

Ответ: 2 · ( x 2 + 2 ) .

Урок по теме «Решение дробных рациональных уравнений». 8-й класс

Разделы: Математика

Класс: 8

Цели урока:

  • формирование понятия дробных рационального уравнения;
  • рассмотреть различные способы решения дробных рациональных уравнений;
  • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  • обучить решению дробных рациональных уравнений по алгоритму;
  • проверка уровня усвоения темы путем проведения тестовой работы.
  • развитие умения правильно оперировать полученными знаниями, логически мыслить;
  • развитие интеллектуальных умений и мыслительных операций — анализ, синтез, сравнение и обобщение;
  • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
  • развитие критического мышления;
  • развитие навыков исследовательской работы.
  • воспитание познавательного интереса к предмету;
  • воспитание самостоятельности при решении учебных задач;
  • воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

  1. Что такое уравнение? (Равенство с переменной или переменными.)
  2. Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа — в правую. Привести подобные слагаемые. Найти неизвестный множитель).
  3. Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
  4. Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
  5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
  6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

х 2 -4х-2х+8 = х 2 +3х+2х+6

х 2 -6х-х 2 -5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

Теперь попытайтесь решить уравнение №7 одним из способов.


источники:

http://zaochnik.com/spravochnik/matematika/vyrazhenija/naimenshij-obschij-znamenatel/

http://urok.1sept.ru/articles/559882