Как выбрать область определения дробного уравнения

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 \ ( x + 4 ) x — 2 — 3 \ ( x — 2 ) x + 4 — 1 \ ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 \ 1 x ( x — 2 ) — x \ x x — 2 — 3 \ ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 \ 1 x — 3 — x \ ( x — 3 ) — 2 \ ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 \ ( x + 2 ) x — 2 — 3 \ ( x — 2 ) x + 2 — 20 \ 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Как найти область определения функции?

Для того, чтобы понять, что такое область определения функции, необходимо знать области определения основных элементарных функций. Для этого нужно углубить знания данной статьей. Будут рассмотрены различные сложнейшие комбинации функций вида y = x + x — 2 или y = 5 · x 2 + 1 · x 3 , y = x x — 5 или y = x — 1 5 — 3 . Рассмотрим теорию и решим несколько примеров с подобными заданиями.

Что значит найти область определения

После того, как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y = f ( x ) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.

Ограничение области определения

Область определения рассматривается еще в школьной курсе. у действительных чисел она может быть ( 0 , + ∞ ) или такой [ − 3 , 1 ) ∪ [ 5 , 7 ) . Еще по виду функции можно визуально определить ее ОДЗ. Рассмотрим, на что может указывать наличие области определения:

  • при имеющемся знаменателе необходимо производить деление такого типа функции как y = x + 2 · x x 4 — 1 ;
  • при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа y = x + 1 или y = 2 3 · x + 3 x ;
  • при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как y = 5 · ( x + 1 ) — 3 , y = — 1 + x 1 1 3 , y = ( x 3 — x + 1 ) 2 , которые определены не для всех чисел;
  • при наличии переменной под знаком логарифма или в основании вида y = ln x 2 + x 4 или y = 1 + log x — 1 ( x + 1 ) причем основание является числом положительным, как и число под знаком логарифма;
  • при наличии переменной, находящейся под знаком тангенса и котангенса вида y = x 3 + t g 2 · x + 5 или y = c t g ( 3 · x 3 — 1 ) , так как они существуют не для любого числа;
  • при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида y = a r c sin ( x + 2 ) + 2 · x 2 , y = a r c cos x — 1 + x , область определения которых определяется ни интервале от — 1 до 1 .

При отсутствии хотя бы одного признака, область определения приходится искать другим образом. Рассмотрим пример функции вида y = x 4 + 2 · x 2 — x + 1 2 + 2 2 3 · x . Видно, что никаких ограничений она не имеет, так как в знаменателе нет переменной.

Правила нахождения области определения

Для примера рассмотрим функцию типа y = 2 · x + 1 . Для вычисления ее значения можем определить x . Из выражения 2 · x + 1 видно, что функция определена на множестве всех действительных чисел. Рассмотрим еще один пример для подробного определения.

Если задана функция типа y = 3 x — 1 , а необходимо найти область определения, тогда понятно, что следует обратить внимание на знаменатель. Известно, что на ноль делить нельзя. Отсюда получаем, что 3 x — 1 знаменатель равняется нулю при х = 1 , поэтому искомая область определения данной функции примет вид ( − ∞ , 1 ) ∪ ( 1 , + ∞ ) и считается числовым множеством.

На рассмотрении примера y = x 2 — 5 · x + 6 видно, что имеется подкоренное выражение, которое всегда больше или равно нулю. Значит запись примет вид x 2 − 5 · x + 6 ≥ 0 . После решения неравенства получим, что имеются две точки, которые делят область определения на отрезки, которые записываются как ( − ∞ , 2 ] ∪ [ 3 , + ∞ ) .

При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.

Область определения суммы, разности и произведения функций

Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно, чтобы имело место следующее утверждение:

Когда функция f f считается суммой n функций f 1 , f 2 , … , f n , иначе говоря, эта функция задается при помощи формулы y = f 1 ( x ) + f 2 ( x ) + … + f n ( x ) , тогда ее область определения считается пересечением областей определения функций f 1 , f 2 , … , f n . Данное утверждение можно записать как:

D ( f ) = D ( f 1 ) D ( f 2 ) . . . D ( f n )

Поэтому при решении рекомендуется использование фигурной скобки при записи условий, так как это является удобным способом для понимания перечисления числовых множеств.

Найти область определения функции вида y = x 7 + x + 5 + t g x .

Заданная функция представляется как сумма четырех: степенной с показателем 7 ,степенной с показателем 1 , постоянной, функции тангенса.

По таблице определения видим, что D ( f 1 ) = ( − ∞ , + ∞ ) , D ( f 2 ) = ( − ∞ , + ∞ ) , D ( f 3 ) = ( − ∞ , + ∞ ) , причем область определения тангенса включает в себя все действительные числа, кроме π 2 + π · k , k ∈ Z .

Областью определения заданной функции f является пересечение областей определения f 1 , f 2 , f 3 и f 4 . То есть для функции существует такое количество действительных чисел, куда не входит π 2 + π · k , k ∈ Z .

Ответ: все действительные числа кроме π 2 + π · k , k ∈ Z .

Для нахождения области определения произведения функций необходимо применять правило:

Когда функция f считается произведением n функций f 1 , f 2 , f 3 и f n , тогда существует такая функция f , которую можно задать при помощи формулы y = f 1 ( x ) · f 2 ( x ) · … · f n ( x ) , тогда ее область определения считается областью определения для всех функций.

Запишется D ( f ) = D ( f 1 ) D ( f 2 ) . . . D ( f n )

Найти область определения функции y = 3 · a r c t g x · ln x .

Правая часть формулы рассматривается как f 1 ( x ) · f 2 ( x ) · f 3 ( x ) , где за f 1 является постоянной функцией, f 2 является арктангенсом, f 3 – логарифмической функцией с основанием e . По условию имеем, что D ( f 1 ) = ( − ∞ , + ∞ ) , D ( f 2 ) = ( − ∞ , + ∞ ) и D ( f 3 ) = ( 0 , + ∞ ) . Мы получаем, что

D ( f ) = D ( f 1 ) D ( f 2 ) D ( f n ) = ( — ∞ , + ∞ ) ( — ∞ , + ∞ ) D ( 0 , + ∞ ) = ( 0 , + ∞ )

Ответ: область определения y = 3 · a r c t g x · ln x – множество всех действительных чисел.

Необходимо остановиться на нахождении области определения y = C · f ( x ) , где С является действительным числом. Отсюда видно, что ее областью определения и областью определения f совпадающими.

Функция y = C · f ( x ) – произведение постоянной функции и f . Область определения – это все действительные числа области определения D ( f ) . Отсюда видим, что область определения функции y = C · f ( x ) является — ∞ , + ∞ D ( f ) = D ( f ) .

Получили, что область определения y = f ( x ) и y = C · f ( x ) , где C является некоторое действительное число, совпадают. Это видно на примере определения корня y = x считается [ 0 , + ∞ ) , потому как область определения функции y = — 5 · x — [ 0 , + ∞ ) .

Области определения y = f ( x ) и y = − f ( x ) совпадают , что говорит о том, что его область определения разности функции такая же, как и область определения их суммы.

Найти область определения функции y = log 3 x − 3 · 2 x .

Необходимо рассмотреть как разность двух функций f 1 и f 2 .

f 1 ( x ) = log 3 x и f 2 ( x ) = 3 · 2 x . Тогда получим, что D ( f ) = D ( f 1 ) D ( f 2 ) .

Область определения записывается как D ( f 1 ) = ( 0 , + ∞ ) . Приступим к области определения f 2 . в данном случае она совпадает с областью определения показательной, тогда получаем, что D ( f 2 ) = ( − ∞ , + ∞ ) .

Для нахождения области определения функции y = log 3 x − 3 · 2 x получим, что

D ( f ) = D ( f 1 ) D ( f 2 ) = ( 0 , + ∞ ) — ∞ , + ∞

Необходимо озвучить утверждение о том, что областью определения y = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 является множество действительных чисел.

Рассмотрим y = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 , где в правой части имеется многочлен с одной переменной стандартного вида в виде степени n с действительными коэффициентами. Допускается рассматривать ее в качестве суммы ( n + 1 ) -ой функции. Область определения для каждой из таких функций включается множество действительных чисел, которое называется R .

Найти область определения f 1 ( x ) = x 5 + 7 x 3 — 2 x 2 + 1 2 .

Примем обозначение f за разность двух функций, тогда получим, что f 1 ( x ) = x 5 + 7 x 3 — 2 x 2 + 1 2 и f 2 ( x ) = 3 · x — ln 5 . Выше было показано, что D ( f 1 ) = R . Область определения для f 2 является совпадающей со степенной при показателе – ln 5 , иначе говоря, что D ( f 2 ) = ( 0 , + ∞ ) .

Получаем, что D ( f ) = D ( f 1 ) D ( f 2 ) = — ∞ , + ∞ ( 0 , + ∞ ) = ( 0 , + ∞ ) .

Область определения сложной функции

Для решения данного вопроса необходимо рассмотреть сложную функцию вида y = f 1 ( f 2 ( x ) ) . Известно, что D ( f ) является множеством всех x из определения функции f 2 , где область определения f 2 ( x ) принадлежит области определения f 1 .

Видно, что область определения сложной функции вида y = f 1 ( f 2 ( x ) ) находится на пересечении двух множеств таких, где x ∈ D ( f 2 ) и f 2 ( x ) ∈ D ( f 1 ) . В стандартном обозначении это примет вид

x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 )

Рассмотрим решение нескольких примеров.

Найти область определения y = ln x 2 .

Данную функцию представляем в виде y = f 1 ( f 2 ( x ) ) , где имеем, что f 1 является логарифмом с основанием e , а f 2 – степенная функция с показателем 2 .

Для решения необходимо использовать известные области определения D ( f 1 ) = ( 0 , + ∞ ) и D ( f 2 ) = ( − ∞ , + ∞ ) .

Тогда получим систему неравенств вида

x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 ) ⇔ x ∈ — ∞ , + ∞ x 2 ∈ ( 0 , + ∞ ) ⇔ ⇔ x ∈ ( — ∞ , + ∞ ) x 2 > 0 ⇔ x ∈ ( — ∞ , + ∞ ) x ∈ ( — ∞ , 0 ) ∪ ( 0 , + ∞ ) ⇔ ⇔ x ∈ ( — ∞ , 0 ) ∪ ( 0 , + ∞ )

Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.

Найти область определения функции y = ( a r c sin x ) — 1 2 .

Так как дана сложная функция, необходимо рассматривать ее как y = f 1 ( f 2 ( x ) ) , где f 1 является степенной функцией с показателем — 1 2 , а f 2 функция арксинуса, теперь необходимо искать ее область определения. Необходимо рассмотреть D ( f 1 ) = ( 0 , + ∞ ) и D ( f 2 ) = [ − 1 , 1 ] . Теперь найдем все множества значений x , где x ∈ D ( f 2 ) и f 2 ( x ) ∈ D ( f 1 ) . Получаем систему неравенств вида

x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 ) ⇔ x ∈ — 1 , 1 a r c sin x ∈ ( 0 , + ∞ ) ⇔ ⇔ x ∈ — 1 , 1 a r c sin x > 0

Для решения a r c sin x > 0 необходимо прибегнуть к свойствам функции арксинуса. Его возрастание происходит на области определения [ − 1 , 1 ] , причем обращается в ноль при х = 0 , значит, что a r c sin x > 0 из определения x принадлежит промежутку ( 0 , 1 ] .

Преобразуем систему вида

x ∈ — 1 , 1 a r c sin x > 0 ⇔ x ∈ — 1 , 1 x ∈ ( 0 , 1 ] ⇔ x ∈ ( 0 , 1 ]

Область определения искомой функции имеет интервал равный ( 0 , 1 ] .

Ответ: ( 0 , 1 ] .

Постепенно подошли к тому, что будем работать со сложными функциями общего вида y = f 1 ( f 2 ( … f n ( x ) ) ) ) . Область определения такой функции ищется из x ∈ D ( f n ) f n ( x ) ∈ D ( f n — 1 ) f n — 1 ( f n ( x ) ) ∈ D ( f n — 2 ) . . . f 2 ( f 3 ( . . . ( f n ( x ) ) ) ∈ D ( f 1 ) .

Найти область определения y = sin ( l g x 4 ) .

Заданная функция может быть расписана, как y = f 1 ( f 2 ( f 3 ( x ) ) ) , где имеем f 1 – функция синуса, f 2 – функция с корнем 4 степени, f 3 – логарифмическая функция.

Имеем, что по условию D ( f 1 ) = ( − ∞ , + ∞ ) , D ( f 2 ) = [ 0 , + ∞ ) , D ( f 3 ) = ( 0 , + ∞ ) . Тогда областью определения функции – это пересечение множеств таких значений, где x ∈ D ( f 3 ) , f 3 ( x ) ∈ D ( f 2 ) , f 2 ( f 3 ( x ) ) ∈ D ( f 1 ) . Получаем, что

x ∈ D ( f 3 ) f 3 ( x ) ∈ D ( f 2 ) f 2 ( f 3 ( x ) ) ∈ D ( f 1 ) ⇔ x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) lg x 4 ∈ — ∞ , + ∞

Условие lg x 4 ∈ — ∞ , + ∞ аналогично условию l g x ∈ [ 0 , + ∞ ) , значит

x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) lg x 4 ∈ — ∞ , + ∞ ⇔ x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) ⇔ ⇔ x ∈ ( 0 , + ∞ ) lg x ∈ [ 0 , + ∞ ) ⇔ x ∈ ( 0 , + ∞ ) lg x ≥ 0 ⇔ ⇔ x ∈ ( 0 , + ∞ ) lg x ≥ lg 1 ⇔ x ∈ ( 0 , + ∞ ) x ≥ 1 ⇔ ⇔ x ∈ [ 1 , + ∞ )

При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.

Область определения дроби

Рассмотрим функцию вида f 1 ( x ) f 2 ( x ) . Стоит обратить внимание на то, что данная дробь определяется из множества обеих функций, причем f 2 ( х ) не должна обращаться в ноль. Тогда получаем, что область определения f для всех x записывается в виде x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 .

Запишем функцию y = f 1 ( x ) f 2 ( x ) в виде y = f 1 ( x ) · ( f 2 ( x ) ) — 1 . Тогда получим произведение функций вида y = f 1 ( x ) с y = ( f 2 ( x ) ) — 1 . Областью определения функции y = f 1 ( x ) является множество D ( f 1 ) , а для сложной y = ( f 2 ( x ) ) — 1 определим из системы вида x ∈ D ( f 2 ) f 2 ( x ) ∈ ( — ∞ , 0 ) ∪ ( 0 , + ∞ ) ⇔ x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 .

Значит, x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ∈ ( — ∞ , 0 ) ∪ ( 0 , + ∞ ) ⇔ x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 .

Найти область определения y = t g ( 2 · x + 1 ) x 2 — x — 6 .

Заданная функция дробная, поэтому f 1 – сложная функция, где y = t g ( 2 · x + 1 ) и f 2 – целая рациональная функция, где y = x 2 − x − 6 , а область определения считается множеством всех чисел. Можно записать это в виде

x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0

Представление сложной функции y = f 3 ( f 4 ( x ) ) , где f 3 –это функция тангенс, где в область определения включены все числа, кроме π 2 + π · k , k ∈ Z , а f 4 – это целая рациональная функция y = 2 · x + 1 с областью определения D ( f 4 ) = ( − ∞ , + ∞ ) . После чего приступаем к нахождению области определения f 1 :

x ∈ D ( f 4 ) 2 · x + 1 ∈ D ( f 3 ) ⇔ x ∈ ( — ∞ , + ∞ ) 2 x + 1 ≠ π 2 + π · k , k ∈ Z ⇔ x ≠ π 4 — 1 2 + π 2 · k , k ∈ Z

Еще необходимо рассмотреть нижнюю область определения y = t g ( 2 · x + 1 ) x 2 — x — 6 . Тогда получаем, что

x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0 ⇔ x ≠ π 4 — 1 2 + π 2 · k , k ∈ Z x ∈ — ∞ , + ∞ x 2 — x — 6 ≠ 0 ⇔ ⇔ x ≠ π 4 — 1 2 + π 2 · k , k ∈ Z x ≠ — 2 x ≠ 3

Ответ: множество действительных чисел, кроме — 2 , 3 и π 4 — 1 2 + π 2 · k , k ∈ Z .

Область определения логарифма с переменной в основании

Определение логарифма существует для положительных оснований не равных 1 . Отсюда видно, что функция y = log f 2 ( x ) f 1 ( x ) имеет область определения, которая выглядит так:

x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1

А аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:

y = log a f 1 ( x ) log a f 2 ( x ) , a > 0 , a ≠ 1 . После чего можно приступать к области определения дробной функции.

Область определения логарифмической функции – это множество действительных положительных чисел, тогда области определения сложных функций типа y = log a f 1 ( x ) и y = log a f 2 ( x ) можно определить из получившейся системы вида x ∈ D ( f 1 ) f 1 ( x ) > 0 и x ∈ D ( f 2 ) f 2 ( x ) > 0 . Иначе эту область можно записать в виде y = log a f 1 ( x ) log a f 2 ( x ) , a > 0 , a ≠ 1 , что означает нахождение y = log f 2 ( x ) f 1 ( x ) из самой системы вида

x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 log a f 2 ( x ) ≠ 0 = x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1

Обозначить область определения функции y = log 2 · x ( x 2 — 6 x + 5 ) .

Следует принять обозначения f 1 ( x ) = x 2 − 6 · x + 5 и f 2 ( x ) = 2 · x , отсюда D ( f 1 ) = ( − ∞ , + ∞ ) и D ( f 2 ) = ( − ∞ , + ∞ ) . Необходимо приступить к поиску множества x , где выполняется условие x ∈ D ( f 1 ) , f 1 ( x ) > 0 , x ∈ D ( f 2 ) , f 2 ( x ) > 0 , f 2 ( x ) ≠ 1 . Тогда получаем систему вида

x ∈ ( — ∞ , + ∞ ) x 2 — 6 x + 5 > 0 x ∈ ( — ∞ , + ∞ ) 2 · x > 0 2 · x ≠ 1 ⇔ x ∈ ( — ∞ , + ∞ ) x ∈ ( — ∞ , 1 ) ∪ ( 5 , + ∞ ) x ∈ ( — ∞ , + ∞ ) x > 0 x ≠ 1 2 ⇔ ⇔ x ∈ 0 , 1 2 ∪ 1 2 , 1 ∪ ( 5 , + ∞ )

Отсюда видим, что искомой областью функции y = log 2 · x ( x 2 — 6 x + 5 ) считается множнство, удовлетворяющее условию 0 , 1 2 ∪ 1 2 , 1 ∪ ( 5 , + ∞ ) .

Ответ: 0 , 1 2 ∪ 1 2 , 1 ∪ ( 5 , + ∞ ) .

Область определения показательно-степенной функции

Показательно-степенная функция задается формулой вида y = ( f 1 ( x ) ) f 2 ( x ) . Ее область определения включает в себя такие значения x , которые удовлетворяют системе x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 1 ( x ) > 0 .

Эта область позволяет переходить от показательно-степенной к сложной вида y = a log a ( f 1 ( x ) ) f 2 ( x ) = a f 2 ( x ) · log a f 1 ( x ) , где где a > 0 , a ≠ 1 .

Найти область определения показательно-степенной функции y = ( x 2 — 1 ) x 3 — 9 · x .

Примем за обозначение f 1 ( x ) = x 2 − 1 и f 2 ( x ) = x 3 — 9 · x .

Функция f 1 определена на множестве действительных чисел, тогда получаем область определения вида D ( f 1 ) = ( − ∞ , + ∞ ) . Функция f 2 является сложной, поэтому ее представление примет вид y = f 3 ( f 4 ( x ) ) , а f 3 – квадратным корнем с областью определения D ( f 3 ) = [ 0 , + ∞ ) , а функция f 4 – целой рациональной, D ( f 4 ) = ( − ∞ , + ∞ ) . Получаем систему вида

x ∈ D ( f 4 ) f 4 ( x ) ∈ D ( f 3 ) ⇔ x ∈ ( — ∞ , + ∞ ) x 3 — 9 · x ≥ 0 ⇔ ⇔ x ∈ ( — ∞ , + ∞ ) x ∈ — 3 , 0 ∪ [ 3 , + ∞ ) ⇔ x ∈ — 3 , 0 ∪ [ 3 , + ∞ )

Значит, область определения для функции f 2 имеет вид D ( f 2 ) = [ − 3 , 0 ] ∪ [ 3 , + ∞ ) . После чего необходимо найти область определения показательно-степенной функции по условию x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 1 ( x ) > 0 .

Получаем систему вида x ∈ — ∞ , + ∞ x ∈ — 3 , 0 ∪ [ 3 , + ∞ ) x 2 — 1 > 0 ⇔ x ∈ — ∞ , + ∞ x ∈ — 3 , 0 ∪ [ 3 , + ∞ ) x ∈ ( — ∞ , — 1 ) ∪ ( 1 , + ∞ ) ⇔ ⇔ x ∈ — 3 , — 1 ∪ [ 3 , + ∞ )

Ответ: [ − 3 , − 1 ) ∪ [ 3 , + ∞ )

В общем случае

Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.

Таблицы основных результатов

Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.Ф

Сумма, разность, произведение функций

f 1 , f 2 , . . . , f n

D ( f 1 ) , D ( f 2 ) , . . . , D ( f n )

y = f 1 ( f 2 ( f 3 ( . . . f n ( x ) ) ) )

Множество всех x , одновременно удовлетворяющих условиям

x ∈ D ( f n ) , f n ( x ) ∈ D ( f n — 1 ) , f n — 1 ( f n ( x ) ) ∈ D ( f n — 2 ) , . . . , f 2 ( f 3 ( . . . f n ( x ) ) ) ∈ D ( f 1 )

x ∈ D ( f 2 ) , f 2 ( x ) ∈ D ( f 1 )

Расположим функции и их области определения.

ФункцияЕе область определения

Прямая пропорциональность y = k · x

Обратная пропорциональность y = k x

Дробная y = f 1 ( x ) f 2 ( x )

В частности, если f 1 ( x ) , f 2 ( x ) — многочлены

Множество всех x , которые одновременно удовлетворяют условиям
x ∈ D ( f 1 ) , x ∈ D ( f 2 ) , f 2 ( x ) ≠ 0

y = log f 2 ( x ) f 1 ( x )

В частности, y = log a f 1 ( x )

В частности, y = log f 2 ( x ) a

x ∈ D ( f 1 ) , f 1 ( x ) > 0 , x ∈ D ( f 2 ) , f 2 ( x ) > 0 , f 2 ( x ) ≠ 1

x ∈ D ( f 1 ) , f 1 ( x ) > 0

x ∈ D ( f 2 ) , f 2 > 0 , f 2 ( x ) ≠ 1

ФункцияЕе область определения
R
Линейная y = k · x + bR
— ∞ , 0 ∪ 0 , + ∞
Квадратичная y = a · x 2 + b · x + cR
y = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0R
Целая рациональнаяR
y = C · f ( x ) , где C — числоD ( f )
y = f ( x ) n , где n — четноеx ∈ D ( f 1 ) , f ( x ) ≥ 0
Показательно-степенная y = ( f 1 ( x ) ) f 2 ( x )x ∈ D ( f 1 ) , x ∈ D ( f 2 ) , f 1 ( x ) > 0

Отметим, что преобразования можно выполнять, начиная с правой части выражения. Отсюда видно, что допускаются тождественные преобразования, которые на область определения не влияют. Например, y = x 2 — 4 x — 2 и y = x + 2 являются разными функциями, так как первая определяется на ( − ∞ , 2 ) ∪ ( 2 , + ∞ ) , а вторая из множества действительных чисел. Из преобразования y = x 2 — 4 x — 2 = x — 2 x + 2 x — 2 = x + 2 видно, что функция имеет смысл при x ≠ 2 .

Как найти область определения функции?

Синонимы: область допустимых значений или сокращенно ОДЗ. Первое, с чем Вы сталкиваетесь при изучении различных функций или же при построении графиков — это область определения функции.

Определение:

Областью определения называется множество значений, которые может принимать x. Обозначение D(f).

Как же это правило применить к заданной Вам функции?

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные «сложные» функции — это всего лишь их сочетания и комбинации.

1. Дробная функция — ограничение на знаменатель.

2. Корень четной степени — ограничение на подкоренное выражение.

3. Логарифмы — ограничение на основание логарифма и подлогарифмическое выражение.

3. Тригонометрические tg(x) и ctg(x) — ограничение на аргумент.

Для тангенса:

на графике тангенса

Для котангенса:

на графике котангенса

4. Обратные тригонометрические функции.

Арксинус АрккосинусАрктангенс, Арккотангенс
Пример 1 Пример 2
Пример 3Пример 4
Пример 5Пример 6
Пример 7Пример 8
Пример 9Пример 10
Пример 11Пример 12
Пример 13Пример 14
Пример 15Пример 16

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени:

y = 2x + 3 уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как y = 2·0 + 3 = 3 — получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10

так как y = 2·10 + 3 = 23 — функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как y = 2·(-10) + 3 = -17 — функция существует при взятом значении переменной х=-10 .

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.

Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R

Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:

y = 10/(x + 5) уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем y = 10/(0 + 5) = 2 — функция существует.

При х = 10 имеем y = 10/(10 + 5) = 10/15 = 2/ 3 — функция существует.

При х = -5 имеем y = 10/(-5 + 5) = 10/0 — функция в этой точке не существует.

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.

x + 5 = 0 → x = -5 — в этой точке заданная функция не существует.

Для наглядности изобразим графически:

На графике также видим, что гипербола максимально близко приближается к прямой х = -5 , но самого значения -5 не достигает.

Видим, что заданная функция существует во всех точках действительной оси, кроме точки x = -5

Формы записи ответа: D(f)=R\ <-5>или D(f)=(-∞;-5) ∪ (-5;+∞) или x ∈ R\ <-5>или x ∈ (-∞;-5) ∪ (-5;+∞)

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.

Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:


Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем — неотрицательна.

Решим простое неравенство:

2х — 8 ≥ 0 → 2х ≥ 8 → х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)=[4 ;+∞) или x ∈ [4 ;+∞) .

На графике видим, что функция существует для найденных значений х : х ≥ 4 или D(f)=[4 ;+∞) или x ∈ [4 ;+∞) .

При попытке подставить вместо х значения, отличные от найденных, под корнем получим отрицательное число, те в этих точках функция не существует.

Если заданная функция содержит квадратный корень (или корень любой четной степени), то обязательно накладывается условие неотрицательности (≥0) на подкоренное выражение. Если квадратный корень находится в знаменателе функции, у которой мы находим область определения, то на подкоренное выражение накладывается условие положительности (>0), так как знаменатель всегда должен быть отличен от нуля.

Пример нахождения области определения функции №4

Рассмотрим пример нахождения области определения функции с корнем четной степени в знаменателе:

В числителе имеем линейную функцию, область определения которой множество всех действительных чисел. (см. пример 1)

В знаменателе — квадратный корень, накладывает условие на подкоренное выражение, не забывая о том, что знаменатель всегда отличен от нуля.

x 2 — 4x + 3 > 0 → (x — 1)(x — 3) > 0

Решим строгое неравенство методом интервалов:

Видим, что функция положительна на следующих интервалах: x∈(-∞;1)∪(3;+∞)

Нашли такие значения переменной х, при которых функция существует — нашли ОДЗ функции.

Пример нахождения области определения функции №5

Рассмотрим пример нахождения области определения функции с корнем нечетной степени:

Имеем дело с корнем нечетной степени. Так как корень нечетной степени существует при любых значениях подкоренного выражения, то заданная дробная функция под корнем может принимать любые значения.

В числителе дробной функции — уравнение первой сnепени, которое существует при любых значениях переменной. Знаменатель любой дроби отличен от нуля. Следовательно, при нахождении ОДЗ заданного выражения имеем дело лишь с одним ограничением — ограничение на знаменатель дроби.

Пример нахождения области определения функции №6

Рассмотрим пример нахождения области определения логарифма:

Простенький пример на область определения логарифмической функции.

Помним, что основание логарифма положительно и отлично от нуля. Подлогарифмическое выражение положительно:

Покажем на числовой прямой:

Получили ОДЗ: x∈(8;9)∪(9;+∞)

Пример нахождения области определения функции №7

Задана функция вида:

1 ограничение основывается на наложении ограничения на знаменатель дроби (отличен от нуля):

Второе ограничение — подлогарифмическое выражение положительно:

Т.е. для определения области определения заданной функции необходимо решить систему:

Необходимо решить каждое из ограничений системы по отдельности и пересечь получившиеся результаты.

Допускаю, что читатель самостоятельно может это проделать и перехожу к разбору следующего примера.

Пример нахождения области определения функции №8

Рассмотрим следующий пример:

Имеем дело с корнем четной степени, следовательно первое ограничение на подкоренное выражение:

Имеем дело с логарифмом, следовательно ограничение на подлогарифмическую функцию:

Таким образом для определения области определения исходной функции необходимо решить систему неравенств:

Каждое из неравенств решим по отдельности.

Первое неравенство будем решать методом интервалов: найдем корни каждого из выражений неравенства, вынесем их на координатную плоскость и расставим знаки неравенства в каждом из полученных интервалов.

Выносим на координатную прямую:

Объясню как расставлены знаки в каждом из интервалов:

Значения левее 6/7 нет смысла рассматривать, так как логарифм для этих значений не существует.

1-ый интервал: (6/7;1]

Основание логарифма больше единицы, следовательно функция возрастающая. В корне x=1 логарифм меняет свое значение с » — » на » + «.


источники:

http://zaochnik.com/spravochnik/matematika/funktsii/kak-najti-oblast-opredelenija-funktsii/

http://matecos.ru/mat/matematika/kak-opredelit-oblast-opredeleniya-grafika-funktsii-5.html