Как вычислить длину вектора по уравнению

Модуль вектора. Длина вектора.

Определение длины вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.

Формулы длины вектора

Формула длины вектора для плоских задач

В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:

Формула длины вектора для пространственных задач

В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:

Формула длины n -мерного вектора

В случае n -мерного пространства модуль вектора a = < a 1 ; a 2; . ; an > можно найти воспользовавшись следующей формулой:

| a | = (nai 2 ) 1/2
Σ
i =1

Примеры задач на вычисление длины вектора

Примеры вычисления длины вектора для плоских задачи

Решение: | a | = √ 2 2 + 4 2 = √ 4 + 16 = √ 20 = 2√ 5 .

Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.

Примеры вычисления длины вектора для пространственных задачи

Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.

Решение: | a | = √ (-1) 2 + 0 2 + (-3) 2 = √ 1 + 0 + 9 = √ 10 .

Примеры вычисления длины вектора для пространств с размерностью большей 3

Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5

Решение: | a | = √ 2 2 + 4 2 + 4 2 + 6 2 + 2 2 = √ 4 + 16 + 16 + 36 + 4 = √ 76 = 2√ 19 .

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение длины вектора, примеры и решения

Длина вектора — основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

Ответ: A B → = 20 — 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Длина вектора. Модуль вектора.

Этот калькулятор онлайн вычисляет длину (модуль) вектора. Вектор может быть задан в 2-х и 3-х мерном пространстве.

Онлайн калькулятор для вычисления длины (модуля) вектора не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: \( -\frac<2> <3>\)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: \( -1\frac<5> <7>\)

Вычислить длину (модуль) вектора

Немного теории.

Скалярные и векторные величины

Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.

Определение вектора

Любая упорядоченная пара точек А к В пространства определяет направленный отрезок, т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В — его концом. Направлением отрезка считают направление от начала к концу.

Определение
Направленный отрезок называется вектором.

Будем обозначать вектор символом \( \overrightarrow \), причем первая буква означает начало вектора, а вторая — его конец.

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается \( \vec <0>\) или просто 0.

Расстояние между началом и концом вектора называется его длиной и обозначается \( |\overrightarrow| \) или \( |\vec| \).

Нулевой вектор будем считать направленным одинаково с любым вектором; длина его равна нулю, т.е. \( |\vec<0>| = 0 \).

Теперь можно сформулировать важное понятие равенства двух векторов.

Определение
Векторы \( \vec \) и \( \vec \) называются равными (\( \vec = \vec \)), если они коллинеарны, одинаково направлены и их длины равны.

Проекция вектора на ось

Пусть в пространстве заданы ось \( u \) и некоторый вектор \( \overrightarrow \). Проведем через точки А и В плоскости, перпендикулярные оси \( u \). Обозначим через А’ и В’ точки пересечения этих плоскостей с осью (см. рисунок 2).

Проекцией вектора \( \overrightarrow \) на ось \( u \) называется величина А’В’ направленного отрезка А’В’ на оси \( u \). Напомним, что
\( A’B’ = |\overrightarrow| \) , если направление \( \overrightarrow \) совпадает c направлением оси \( u \),
\( A’B’ = -|\overrightarrow| \) , если направление \( \overrightarrow \) противоположно направлению оси \( u \),
Обозначается проекция вектора \( \overrightarrow \) на ось \( u \) так: \( Пр_u \overrightarrow \).

Теорема
Проекция вектора \( \overrightarrow \) на ось \( u \) равна длине вектора \( \overrightarrow \) , умноженной на косинус угла между вектором \( \overrightarrow \) и осью \( u \) , т.е. \( Пр_u \overrightarrow = |\overrightarrow|\cos \varphi \) где \( \varphi \) — угол между вектором \( \overrightarrow \) и осью \( u \).

Замечание
Пусть \( \overrightarrow=\overrightarrow \) и задана какая-то ось \( u \). Применяя к каждому из этих векторов формулу теоремы, получаем
\( Пр_u \overrightarrow = Пр_u \overrightarrow \)
т.е. равные векторы имеют равные проекции на одну и ту же ось.

Проекции вектора на оси координат

Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор \( \overrightarrow \). Пусть, далее, \( X = Пр_u \overrightarrow, \;\; Y = Пр_u \overrightarrow, \;\; Z = Пр_u \overrightarrow \). Проекции X, Y, Z вектора \( \overrightarrow \) на оси координат называют его координатами. При этом пишут
\( \overrightarrow = (X;Y;Z) \)

Теорема
Каковы бы ни были две точки A(x1; y1; z1) и B(x2; y2; z2), координаты вектора \( \overrightarrow \) определяются следующими формулами:

Замечание
Если вектор \( \overrightarrow \) выходит из начала координат, т.е. x2 = x, y2 = y, z2 = z, то координаты X, Y, Z вектора \( \overrightarrow \) равны координатам его конца:
X = x, Y = y, Z = z.

Направляющие косинусы вектора

Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
\( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.

Линейные операции над векторами и их основные свойства

Сложение двух векторов

Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора \( \vec,\;\; \vec, \;\; \vec \). Сложив \( \vec \) и \( \vec \), получим вектор \( \vec + \vec \). Прибавив теперь к нему вектор \( \vec \), получим вектор \( \vec + \vec + \vec \)

Произведение вектора на число

Основные свойства линейных операций

1. Переместительное свойство сложения
\( \vec + \vec = \vec + \vec \)

3. Сочетательное свойство умножения
\( \lambda (\mu \vec) = (\lambda \mu) \vec \)

4. Распределительное свойство относительно суммы чисел
\( (\lambda +\mu) \vec = \lambda \vec + \mu \vec \)

5. Распределительное свойство относительно суммы векторов
\( \lambda ( \vec+\vec) = \lambda \vec + \lambda \vec \)

Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».

Теоремы о проекциях векторов

Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
\( Пр_u (\vec + \vec) = Пр_u \vec + Пр_u \vec \)

Теорему можно обобщить на случай любого числа слагаемых.

Разложение вектора по базису

Пусть векторы \( \vec, \; \vec, \; \vec \) — единичные векторы осей координат, т.e. \( |\vec| = |\vec| = |\vec| = 1 \), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов \( \vec, \; \vec, \; \vec \) называется базисом.
Имеет место следующая теорема.

Теорема
Любой вектор \( \vec \) может быть единственным образом разложен по базису \( \vec, \; \vec, \; \vec\; \), т.е. представлен в виде
\( \vec = \lambda \vec + \mu \vec + \nu \vec \)
где \( \lambda, \;\; \mu, \;\; \nu \) — некоторые числа.


источники:

http://zaochnik.com/spravochnik/matematika/vektory/dlina_vectora/

http://www.math-solution.ru/math-task/vect-length