Как выделить целую часть уравнения

Урок-семинар по теме: «Решение уравнений, содержащих целую часть числа»

Разделы: Математика

Цель урока.

  • Углубление знаний по теме урока.
  • Развитие самостоятельной учебно-познавательной деятельности.
  • Развитие навыков групповой работы.
  • Оценка реальности и красоты каждого из предложенных способов решения уравнения.

Тип урока: комбинированный.

Метод: проблемный и частично поисковый.

Оборудование:

  • Кодоскоп.
  • Плёнки с графиками функций ;
  • “Информация к размышлению”- подборка задач по теме “целая и дробная части числа” для учащихся 8-11-х классов с указанием литературы.

Предварительная подготовка к уроку-семинару.

Класс разбивается на 4 группы (по числу способов решения уравнения), для каждой группы указывается способ решения и литература, где этот способ можно найти. Затем для каждой группы производится консультация, на которой проверяется готовность каждой группы и выясняются все возникающие вопросы. Каждая группа выдвигает своего докладчика, который будет на уроке решать задачу указанным способом.

План урока:

  1. Организационный момент.
  2. Вступительное слово учителя.
  3. Повторение.
  4. Проверка домашнего задания.
  5. Семинар.
  6. Итог урока.

Вступительное слово учителя.

В последние годы задачи на решение уравнений с целой частью числа постоянно встречаются на олимпиадах и на вступительных экзаменах в высшие учебные заведения. Такие задачи для учеников являются непривычными и сложными.

Впервые знакомство с целой и дробной частью числа встречается в 8-м классе, когда вводится определение целой и дробной части числа и строятся графики y=[x]; y=;

Но в учебниках нет методов решения уравнений, содержащих целую часть числа.

Поэтому сегодня мы повторим то, что знаем и рассмотрим различные способы решения ещё одного вида уравнений, содержащих целую часть числа.

Повторение.

Вызываю 2 человека к доске решать домашнее задание.

Устно с помощью кодоскопа:

Определение целой части числа. Найти [25,8]; [0.75]; [-1]; [-2,74]; [-3,8].

Свойства: если, то [x]=x; если то [x] 3.

При m=4 значит, промежуток [5;6) не входит в решение уравнения.

в) Получим, что данному уравнению из интервала (2;6) не удовлетворяют числа 2

0t

2) график y=[x-1] берётся из домашнего задания;

3)обе плёнки совмещаем на экране.

Графики и совпадают при 3x 26.11.2003

Дробная линейная функция на занятиях с репетитором по математике

Рассмотрим вопросы методики изучения такой темы, как «построение графика дробной линейной функции». К сожалению, ее изучение удалено из базовой программы и репетитор по математике на своих занятиях не так часто ее затрагивает, как хотелось бы. Однако, математические классы еще никто не отменял, вторую часть ГИА тоже. Да и в ЕГЭ существует вероятность ее проникновения в тело задачи С5 (через параметры). Поэтому придется засучить рукава и поработать над методикой ее объяснения на уроке со средним или в меру сильным учеником. Как правило, репетитор по математике вырабатывает приемы объяснений по основным разделам школьной программы в течение первых 5 -7 лет работы. За это время через глаза и руки репетитора успевают пройти десятки учеников самых разных категорий. От запущенных и слабых от природы детей, лодырей и прогульщиков до целеустремленных талантов.

Со временем к репетитору по математике приходит мастерство объяснений сложных понятий простым языком не в ущерб математической полноте и точности. Вырабатывается индивидуальный стиль подачи материала, речи, визуального сопровождения и оформления записей. Любой опытный репетитор расскажет урок с закрытыми глазами, ибо наперед знает, какие проблемы возникают с пониманием материала и что нужно для их разрешения. Важно подобрать правильные слова и записи, примеры для начала урока, для середины и конца, а также грамотно составить упражнения для домашнего задания.

О некоторых частных приемах работы с темой пойдет речь в данной статье.

С построения каких графиков начинает репетитор по математике?

Нужно начать с определения изучаемого понятия. Напоминаю, что дробной линейной функцией называют функцию вида . Ее построение сводится к построению самой обычной гиперболы путем известных несложных приемов преобразования графиков. На практике, несложными они оказываются только для самого репетитора. Даже если к преподавателю приходит сильный ученик, с достаточной скоростью вычислений и преобразований, ему все равно приходится рассказывать эти приемы отдельно. Почему? В школе в 9 классе строят графики только путем сдвига и не используют методов добавления числовых множителей (методов сжатия и растяжения). Какой график используется репетитором по математике? С чего лучше начать? Вся подготовка проводится на примере самой удобной, на мой взгляд, функции . А что еще использовать? Тригонометрию в 9 классе изучают без графиков (а в переделанных учебниках под условия проведения ГИА по математике и вовсе не проходят). Квадратичная функция не имеет в данной теме такого же «методического веса», какой имеет корень. Почему? В 9 классе квадратный трехчлен изучается досконально и ученик вполне способен решать задачи на построение и без сдвигов. Форма мгновенно вызывает рефлекс к раскрытию скобок, после которого можно применить правило стандартного построения графика через вершину параболы и таблицу значений. С такой маневр выполнить не удастся и репетитору по математике будет легче мотивировать ученика на изучение общих приемов преобразований. Использование модуля y=|x| тоже не оправдывает себя, ибо он не изучается так же плотно, как корень и школьники панически его боятся. К тому же, сам модуль (точнее его «навешивание») входит в число изучаемых преобразований.

Итак, репетитору не остается ничего более удобного и эффективного, как провести подготовку к преобразованиям с помощью квадратного корня. Нужна практика построений графиков примерно такого вида . Будем считать, что эта подготовка удалась на славу. Ребенок умеет сдвигать и даже сжимать/растягивать графики. Что дальше?

Далее стоит напомнить о том, как выглядит обратная пропорциональность и в каких четвертях располагается ее график в зависимости от знака коэффициента k.

Следующий этап – обучение выделению целой части. Пожалуй, это основная задача репетитора по математике, ибо после того, как целая часть будет выделена, она принимает на себя львиную долю всей вычислительной нагрузки на тему. Чрезвычайно важно подготовить функцию к виду, вписывающемуся в одну из стандартных схем построения. Также важно описать логику преобразований доступным понятным , а с другой стороны математически точно и стройно.

Напомню, что для построения графика необходимо преобразовать дробь к виду . Именно к такому, а не к
, сохраняя знаменатель. Почему? Сложно выполнять преобразования того графика, который не только состоит из кусочков, но еще и имеет асимптоты. Непрерывность используется для того, чтобы соединить две-три более-менее понятно передвинутые точки одной линией. В случае разрывной функции не сразу разберешь, какие именно точки соединять. Поэтому сжимать или растягивать гиперболу – крайне неудобно. Репетитор по математике просто обязан научить школьника обходиться одними сдвигами.

Для этого помимо выделения целой части нужно еще удалить в знаменателе коэффициент c.

Выделение целой части у дроби

Как научить выделению целой части? Репетиторы по математике не всегда адекватно оценивают уровень знаний школьника и, несмотря на отсутствие в программе подробного изучения теоремы о делении многочленов с остатком, применяют правило деления уголком. Если преподаватель берется за уголочное деление, то придется потратить на его объяснение (если конечно все аккуратно обосновывать) почти половину занятия. К сожалению, не всегда это время у репетитора имеется в наличии. Лучше вообще не вспоминать ни о каких уголках.

Существует две формы работы с учеником:
1) Репетитор показывает ему готовый алгоритм на каком-нибудь примере дробной функции.
2) Преподаватель создает условия для логического поиска этого алгоритма.

Реализация второго пути мне представляется наиболее интересной для репетиторской практики и чрезвычайно полезной для развития мышления ученика. С помощью определенных намеков и указаний часто удается подвести к обнаружению некой последовательности верных шагов. В отличие от машинального выполнения кем-то составленного плана, школьник 9 класса учится самостоятельно его искать. Естественно, что все пояснения необходимо проводить на примерах. Возьмем для этого функцию и рассмотрим комментарии репетитора к логике поиска алгоритма. Репетитор по математике спрашивает: «Что мешает нам выполнить стандартное преобразование графика , при помощи сдвига вдоль осей? Конечно же, одновременное присутствие икса и в числителе и в знаменателе. Значит необходимо удалить его из числителя. Как это сделать при помощи тождественных преобразований? Путь один – сократить дробь. Но у нас нет равных множителей (скобок). Значит нужно попытаться создать их искусственно. Но как? Не заменишь же числитель на знаменатель без всякого тождественного перехода. Попробуем преобразовать числитель, чтобы в него включалась скобка, равная знаменателю. Поставим ее туда принудительно и «обложим» коэффициентами так, чтобы при их «воздействии» на скобку, то есть при ее раскрытии и сложении подобных слагаемых, получался бы линейный многочлен 2x+3.

Репетитор по математике вставляет пропуски для коэффициентов в виде пустых прямоугольников (как это часто используют пособия для 5 – 6 классов) и ставит задачу — заполнить их числами. Подбор следует вести слева направо, начиная с первого пропуска. Ученик должен представить себе, как он будет раскрывать скобку. Так как ее раскрытия получится только одно слагаемое с иксом, то именно его коэффициент должен быть равным старшему коэффициенту в старом числителе 2х+3. Поэтому, очевидно, что в первом квадратике оказывается число 2. Он заполнен. Репетитору по математике следует взять достаточно простую дробную линейную функцию, у которой с=1. Только после этого можно переходить к разбору примеров с неприятным видом числителя и знаменателя (в том числе и с дробными коэффициентами).

Идем дальше. Преподаватель раскрывает скобку и подписывает результат прямо над ней.
Можно заштриховать соответствующую пару множителей. К «раскрытому слагаемому», необходимо добавить такое число из второго пропуска, чтобы получить свободный коэффициент старого числителя. Очевидно, что это 7.

Итог подбора:

Далее дробь разбивается на сумму отдельных дробей (обычно я обвожу дроби облачком, сравнивая их расположение с крылышками бабочки). И говорю: «Разобьем дробь бабочкой». Школьники хорошо запоминают эту фразу.

Репетитор по математике показывает весь процесс выделения целой части до вида, к которому уже можно применить алгоритм сдвига гиперболы :

Если знаменатель имеет не равный единице старший коэффициент, то ни в коем случае не нужно его там оставлять. Это принесет и репетитору и ученику лишнюю головную боль, связанную с необходимостью проведения дополнительного преобразования, Причем самого сложного: сжатия — растяжения. Для схематического построения графика прямой пропорциональности не важен вид числителя. Главное знать его знак. Тогда к нему лучше перебросить старший коэффициент знаменателя. Например, если мы работаем с функцией , то просто вынесем 3 за скобку и «поднимем» ее в числитель, конструируя в нем дробь . Получим значительно более удобное выражение для построения: Останется сдвинуть на вправо и на 2 вверх.

Если между целой частью 2 и оставшейся дробью возникает «минус», его тоже лучше занести в числитель. Иначе на определенном этапе построения придется дополнительно отображать гиперболу относительно оси Oy. Это только усложнит процесс.

Золотое правило репетитора по математике:
все неудобные коэффициенты, приводящие к симметриям, к сжатиям или растяжениям графика нужно перебросить в числитель.

Трудно описывать приемы работы с любой темой. Всегда остается ощущение некоторой недосказанности. Насколько удалось рассказать о дробной линейной функции — судить Вам. Присылайте Ваши комментарии и отзывы к статье (их можно написать в окошке, которое Вы видите внизу страницы). Я обязательно их опубликую.

Колпаков А.Н. Репетитор по математике Москва. Строгино. Методики для репетиторов.

Выделение целой части, перевод смешанных дробей

Дроби, у которых числитель меньше знаменателя, называются правильные дроби.

Дроби, у которых числитель больше либо равен знаменателю, называются неправильные дроби. Для неправильных дробей действует негласное правило, согласно которому необходимо в конце решения в обязательном порядке выделить целую часть. Для того чтобы выделить целую часть из неправильной дроби, нужно разделить числитель на знаменатель, записать целую часть перед дробью, посередине, остаток записать в числитель, а знаменатель оставить тем же.

Пример: , где 1 -результат деления, а 2 -остаток от деления.

Некоторые действия с дробями требуют, наоборот, исключительно неправильных дробей. Среди них, в первую очередь – умножение и деление дробей. Для того чтобы превратить смешанную дробь (дробь, в которой присутствует целая часть) в неправильную дробь, необходимо целую часть умножить на знаменатель, прибавить к ней текущий числитель дроби – это и станет новым числителем. Знаменатель останется тем же.

Пример:

В обоих случаях, если изначальная дробь была несократимой, то в результате у числителя и знаменателя также не найдется общих множителей.


источники:

http://ankolpakov.ru/drobnaya-linejnaya-funkciya-na-zanyatiyax-s-repetitorom-po-matematike/

http://geleot.ru/education/math/arithmetic/rational_numbers/mixed_fractions