Как выразить косинус из уравнения

Универсальная тригонометрическая подстановка, вывод формул, примеры

Данная статья посвящена разбору такой темы, как универсальная тригонометрическая подстановка. Суть данного термина состоит в том, что мы находим значение любой тригонометрической функции ( sin α , cos α , t g α , c t g α ) через формулу тангенса половинного угла. Этот вариант намного проще и рациональнее, так как выполнять дальнейшие вычисления легче без корней, а с целыми числами.

Мы подробно рассмотрим этот раздел. Для начала мы расскажем вам о формулах тангенса половинного угла, которой мы будем часто пользоваться. После мы перейдем к практическому применении формул, рассмотрим несколько примеров использования универсальной тригонометрической подстановки.

Универсальная тригонометрическая подстановка для sin α , cos α , t g α , c t g α

Во введении мы рассказали, что основной темой этого раздела станет основная тригонометрическая подстановка. Для начала запишем и разберем формулы, с помощью которых можно выразить sin α , cos α , t g α , c t g α через тангенс половинного угла α 2 .

sin α = 2 · t g α 2 1 + t g 2 α 2 , cos α = 1 — t g 2 α 2 1 + t g 2 α 2 t g α = 2 · t g α 2 1 — t g 2 α 2 , c t g = 1 — t g 2 α 2 2 · t g α 2

Указанные формулы будут правильны для всех углов α . Для работы в задаче должен быть определен входящие тангенсы и котангенсы.

Формулы для sin α и cos α , sin α = 2 · t g α 2 1 + t g 2 α 2 и cos α = 1 — t g 2 α 2 1 + t g 2 α 2 имеют место для a ≠ π + 2 π · z , где z – любое целое число, так как при a = π + 2 π · z , t g α 2 не определен.

Формула t g α = 2 · t g α 2 1 — t g 2 α 2 справедлива для α ≠ π 2 + π · z и a ≠ π + 2 π · z , так как при a = π 2 + π · z не определен t g α Знаменатель дроби обращается в нуль, а при α = π + 2 π · z не определен t g α 2 .

Формула c t g = 1 — t g 2 α 2 2 · t g α 2 , выражающая c t g через t g α 2 , справедлива для a ≠ π · z , так как при a = π · z не определен c t g , при a = π + 2 π · z не определен t g α 2 , а при α = 2 π · z знаменатель дроби обращается в нуль.

Вывод формул

Разберем вывод формул, выражающих sin α , cos α , t g α , c t g α через тангенс половинного угла. Начнем с формул для синуса и косинуса. Представим синус и косинус по формулам двойного угла как sin α = 2 · sin α 2 · cos α 2 и cos α = cos 2 α 2 — sin 2 α 2 соответственно. Теперь выражения 2 · sin α 2 · cos α 2 и cos 2 α 2 — sin 2 α 2 запишем в виде дробей со знаменателем 1 как 2 · sin α 2 · cos α 2 1 и cos 2 α 2 — sin 2 α 2 1 . Воспользуемся основным тождеством из тригонометрии и заменим единицы в знаменателе на сумму квадратов sin и cos , после чего получаем 2 · sin α 2 · cos α 2 sin 2 α 2 + cos 2 α 2 и cos 2 α 2 — sin 2 α 2 sin 2 α 2 + cos 2 α 2

Для решения данного выражения необходимо числитель и знаменатель полученных дробей разделить на cos 2 α 2 (его значение не равно нулю при условии α ≠ π + 2 π · z ). Вся формула будет выглядеть так sin α = 2 · sin α 2 · cos α 2 = 2 · sin α 2 · cos α 2 sin 2 α 2 + cos 2 α 2 = 2 · sin α 2 · cos α 2 cos 2 α 2 sin 2 α 2 + cos 2 α 2 cos 2 α 2 = 2 · sin α 2 cos α 2 sin 2 α 2 с os 2 α 2 + cos 2 α 2 с os 2 α 2 = 2 · t g α 2 t g 2 α 2 + 1

и cos α = cos 2 α 2 — sin 2 α 2 = c os 2 α 2 — sin 2 α 2 1 = c os 2 α 2 — sin 2 α 2 sin 2 α 2 + c os 2 α 2 = = cos 2 α 2 — sin 2 α 2 c os 2 α 2 sin 2 α 2 + c os 2 α 2 c os 2 α 2 = cos 2 α 2 cos 2 α 2 — sin 2 α 2 cos 2 α 2 sin 2 α 2 c os 2 α 2 + cos 2 α 2 c os 2 α 2 = 1 — t g 2 α 2 t g 2 α 2 + 1

Мы закончили вывод формул для sin и cos , завершив все вычислительные действия.

Следующий шаг – это вывод определенных формул для нахождения t g и c t g .

Взяв за основу описанные выше примеры t g α = sin α cos α и c t g α = cos α sin α , мы сразу получаем формулы, которые выражают тангенс и котангенс через тангенс половинного угла:

t g α = sin α cos α = 2 · t g α 2 1 + t g 2 α 2 1 — t g 2 α 2 1 + t g 2 α 2 = 2 · t g α 2 1 — t g 2 α 2 ;

c t g α = cos α sin α = 1 — t g 2 α 2 1 + t g 2 α 2 2 · t g α 2 1 + t g 2 α 2 = 1 — t g 2 α 2 2 · t g α 2 ;

В этом разделе мы нашли все формулы, которые нам потребуются для выражения основных тригонометрических функций.

Примеры использования в задачах и упражнениях

Для начала рассмотрим пример применения универсальной тригонометрической подстановки при преобразовании выражений.

Необходимо привести 2 + 3 · cos 4 α sin 4 α — 5 к примеру, который содержит только одну функцию t g 2 α .

В данном упражнении мы также воспользуемся универсальной подстановкой, которая является одним из важных правил тригонометрии. Применим к косинусу и синусу 4 α те самые формулировки, которые выражают основные функции через тангенс половинного угла. Получив сложное выражение, нам остается только его упростить.

2 + 3 · cos 4 α sin 4 α — 5 = 2 + t g 2 2 α t g 2 2 α + 1 2 · t g 2 α t g 2 2 α + 1 — 5 = 2 · t g 2 2 α + 2 + 3 — 3 · t g 2 2 α t g 2 2 α + 1 2 · t g 2 α — 5 · 2 · t g 2 2 α — 5 t g 2 2 α + 1 = t g 2 2 α — 5 5 · t g 2 2 α — 2 · t g 2 α + 5

2 + 3 · cos 4 α sin 4 α — 5 = t g 2 2 α — 5 5 · t g 2 2 α — 2 · t g 2 α + 5 .

Вспомним, что во введении мы подробно рассказали, как менять sin α , cos α , t g α , c t g α в частных случаях. Она заключается в том, чтобы преобразовать первоначальное рациональное выражение, содержащее sin , cos , t g и c t g , к выражению с одной функцией благодаря формуле. Это намного проще и понятнее. Мы выражаем все формулы через t g половинного угла. Данное преобразование обязательно пригодится при решении разнообразных уравнений и задач, интегрировании основных функций sin α , cos α , t g α , c t g α .

Как выразить косинус из уравнения

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)


источники:

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij

http://ya-znau.ru/znaniya/zn/280