Как записывается основное уравнение динамики поступательного движения

Как записывается основное уравнение динамики поступательного движения

Рис. 1.3.2. Координаты центра масс системы, состоящей из двух тел массами m1 и m2

Рис. 1.3.3. Произвольная система тел с центром инерции C

Центр тяжести совпадает с центром масс (центром инерции), если g (ускорение силы тяжести) для всех тел системы одинаково.

Скорость центра инерции системы vc равна

p — импульс системы тел, vi — скорость i-го тела системы. Так как. то импульс системы тел можно определить по формуле

Импульс системы тел равен произведению массы системы на скорость её центра инерции.

1.3.6. Основное уравнение динамики поступательного движения

Тела, не входящие в состав рассматриваемой системы, называют внешними телами, а силы, действующие на систему со стороны этих тел, — внешними силами. Силы взаимодействия между телами внутри системы называют внутренними силами.

2. ДИНАМИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ

Уравнение динамики поступательного движения тела:

,

Где M – масса тела, – его ускорение, – сумма всех действующих на тело сил.

Импульсом тела называется произведение массы тела на его скорость: .

Закон изменения импульса:

= .

Работой силы F на перемещении Ds называется произведение проекции силы на направление перемещения на это перемещение:

Где α – угол между направлениями силы и перемещения.

Работа переменной силы вычисляется как:

A = .

Мощностью называют работу, произведенную за единицу времени: N = .

Мгновенная мощность равна скалярному произведению силы, действующей на тело, на его скорость:

N = .

Кинетическая энергия тела при поступательном движении:

,

Где M – масса тела, υ – его скорость.

Потенциальная энергия тела

– в однородном поле тяжести:

(M – масса тела, G – ускорение свободного падения, H – высота тела над точкой, в которой потенциальная энергия принимается равной нулю);

– в поле упругих сил:

EП =

(K – коэффициент жесткости упругого тела, X – смещение от положения равновесия).

В замкнутой системе частиц полный импульс системы не меняется в процессе ее движения:

Σ = Const.

В замкнутой консервативной системе частиц сохраняется полная механическая энергия:

Работа сил сопротивления равна убыли полной энергии системы частиц или тела: AConp = E1 – E2.

Примеры решения задач

Канат лежит на столе так, что часть его свешивается со стола, и начинает скользить тогда, когда длина свешивающейся части составляет 25% всей его длины. Чему равен коэффициент трения каната о стол?

Разрежем мысленно канат в месте сгиба и соединим обе части невесомой нерастяжимой нитью. Когда канат только начнёт скользить, все силы уравновесятся (так как он движется ещё без ускорения), а сила трения достигает величины силы трения скольжения, FТр = μΝ.

Условия равновесия сил:

Mg = N

FТр = T

Mg = T M

Отсюда: μMg= Mg,

Или μ =

x Y Запишем уравнения движения обоих тел:

А: M = M +

X X X В: M = M + +

В проекциях для тела А:

Для тела В по оси Х:

Если сложить уравнения (3) и (4), то получим:

–2Ma =Mg + mg Sin a, или

A = g

Подставив это значение, например, в уравнение (3) (можно в (4)), получаем: T = MgMa = Mg

Подставляем числовые значения:

A = 9,8 = = 2,45

T = 1 ∙ 9,8 = 7,35 H

Вагон массой 20 т, двигавшийся равномерно, под действием силы трения в 6 кН через некоторое время остановился. Начальная скорость вагона равна 54 км/ч. Найти: 1) работу сил трения; 2) расстояние, которое вагон пройдёт до остановки.

Работа равна приращению кинетической энергии тела:

AТр = 0 – = – ,

Знак «–» означает, что работа сил трения отрицательна, так как силы трения направлены против движения.

С другой стороны, работу силы трения можно рассчитать через произведение силы на путь:

Отсюда S = =

Подставив числовые значения:

M = 2.104 кг, FТр = 6.103 Н, υ = 15 ,

AТр = = 2,25.106 Дж = 2,25 МДж,

S = = 358 м.

Камень бросили под углом α = 60о к горизонту со скоростью υ0=15 м/с. Найти кинетическую, потенциальную и полную энергию камня: 1) спустя одну секунду после начала движения; 2) в высшей точке траектории. Масса камня M = 0,2 кг. Сопротивлением воздуха пренебречь.

Выберем ось Х – по горизонтали, а ось У – по вертикали.

υX = υ0 Cos a, (6)

a X В момент времени T модуль скорости определится из соотношения:

Высота камня над поверхностью земли в момент времени T определяется из соотношения:

H = υ0 sin a . (8)

Находим кинетическую, потенциальную и полную энергию в момент времени T:

EK = = ( υ02 – 2 υ0 Gt sin a + g2T2),

EП = mgh = ( 2 υ0 Gt sin a – g2T2),

E = EK + EП= .

В высшей точке траектории υY = 0. Этой точки камень достигает за время = (из (7)), и максимальная высота подъёма HMax= (из (8)).

EK = = ,

EП = mghMax = ,

E = EK + EП = .

Подставляем числовые значения. В момент времени T = 1 c.

В высшей точке траектории:

На рельсах стоит платформа массой M1 = 10 т, на платформе закреплено орудие массой M2 = 5 т, из которого проводится выстрел вдоль рельсов. Масса снаряда M3 = 100 кг, его начальная скорость относительно орудия υ0 = 500 м/с. Определить скорость υX платформы в первый момент времени, если: 1) платформа стояла неподвижно, 2) платформа двигалась со скоростью υ1 = 18км/ч, и выстрел был произведён в направлении её движения, 3) платформа двигалась со скоростью υ1 = 18 км/ч, и выстрел был произведён в направлении, противоположном её движению.

Согласно закону сохранения импульса, импульс замкнутой системы до какого-либо события (в данном случае выстрела) должен быть равен её импульсу после события. За положительное выбираем направление скорости снаряда. До выстрела вся система имела импульс (M1+M2+M3)υ1, после выстрела платформа с орудием движутся со скоростью υX, их импульс (M1+M2)υX, а снаряд относительно земли движется со скоростью υ0+ υ1, его импульс M3(υ0+υ1). Закон сохранения импульса записывается так:

Отсюда υX = = υ1 – υ0.

Подставляем значения масс, υ1 и υ0:

Знак минус означает, что платформа с орудием движется противоположно направлению движения снаряда;

2) υ1 = 18 км/ч = 5 м/с,

Платформа с орудием продолжает двигаться в направлении выстрела, но с меньшей скоростью;

3) υ1 = – 18 км/ч = – 5 м/с

Скорость платформы, двигавшейся в направлении, противоположном направлению выстрела, увеличивается.

Пуля, летящая горизонтально, попадает в шар, подвешенный на лёгком жёстком стержне, и застревает в нём. Масса пули в 1000 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара равно 1 м. Найти скорость пули, если известно, что стержень с шаром отклонился от удара на угол 10о.

Если пуля застревает в шаре, то удар

Абсолютно неупругий, и выполняется только закон сохранения импульса. До удара пуля имела импульс Mυ, шар импульса не имел. Непосредственно после удара пуля с шаром имеют общую скорость υ1, их импульс (M + M) υ1.

Закон сохранения импульса:

Отсюда υ1 = υ.

Шар вместе с пулей в момент удара приобрёл кинетическую энергию:

EK = υ12 = υ2 = .

За счёт этой энергии шар поднялся на высоту H, при этом его кинетическая энергия переходит в потенциальную:

EK = EП Þ = (M + M) Gh. (9)

Высоту H можно выразить через расстояние от точки подвеса до центра шара и угол отклонения от вертикали

H = LL Cos a = L(1 – cos a).

Подставив последнее выражение в соотношение (9), получим:

A L = GL(1 – cos a),

H И определим скорость пули:

υ = .

Подставив числовые значения, получим:

υ = 1001 » 543 м/с.

Камень, привязанный к верёвке, равномерно вращается в вертикальной плоскости. Найти массу камня, если известно, что разность между максимальным и минимальным натяжениями верёвки равны 9,8 Н.

Решение

В верхней точке траектории и сила тяжести, и сила натяжения верёвки направлены вниз.

L Уравнение движения в верхней точке имеет вид:

L Man = M = Mg + T1.

В нижней точке траектории сила тяжести направлена вниз, а сила натяжения верёвки и нормальное ускорение вверх. Уравнение движения в нижней точке:

Man = M = T2 – Mg.

По условию камень вращается с постоянной скоростью, поэтому левые части обоих уравнений одинаковы. Значит, можно приравнять правые части:

M = .

Подставляем числа: M = = 0,5 кг.

Шоссе имеет вираж с уклоном в 10° при радиусе закругления дороги в 100 м. На какую скорость рассчитан вираж?

Сила, действующая на автомобиль, складывается

из силы тяжести и силы нормального давления . Сумма этих сил обусловливает нормальное ускорение автомобиля при повороте.

Из треугольника сил видно, что: = tg a.

Рассчитаем An, сократив массу

= tg a,

Отсюда υ = =41,5 м/с.

Техническая механика

Динамика системы материальных точек

Уравнение поступательного движения твердого тела

Механической системой материальных точек называется совокупность материальных точек, каким-то образом связанных межу собой.
Всякое твердое тело можно считать неизменяемой механической системой материальных точек. Силы взаимодействия точке данной системы называются внутренними силами; силы, с которыми действуют на данную систему другие точки, не входящие в эту систему, — внешними.

Пусть твердое тело массой m движется под действием силы F поступательно с ускорением а (рис. 1) .

Разобьем тело на ряд материальных точек с массами m1 и применим принцип Даламбера, не забывая при этом, что внутренние силы в уравнение равновесия не входят, так как на основании третьего закона Ньютона их сумма для системы в целом равна нулю.
В каждой материальной точке приложим силу инерции Fi ин = — mia и составим уравнение равновесия:

ΣX = 0 ; F – ΣFi ин = 0 ,

Так как при поступательном движении все точки тела имеют одинаковые ускорения, то а можно вынести за знак суммы, т. е.

Согласно второму закону Ньютона векторы силы F и ускорения а совпадают по направлению, поэтому можно записать:

Это и есть уравнение поступательного движения твердого тела. Очевидно, что это уравнение ничем не отличается от основного уравнения динамики точки, следовательно, все формулы динамики точки применимы для тела, движущегося поступательно.

Уравнение вращательного движения твердого тела

Пусть твердое тело под действием системы сил вращается вокруг неподвижной оси z с угловым ускорением α (рис. 2) .

Разобьем тело на ряд материальных точек с массами mi и применим, как и в предыдущем случае, принцип Даламбера (Д’Аламбера).
К каждой материальной точке приложены касательная и нормальная силы инерции. Составим уравнение равновесия:

Моменты реакций подшипника и подпятника, а также сил Fτi ин относительно оси z равны нулю, так как линии действия этих сил пересекают ось; сумма моментов внешних сил относительно оси вращения называется вращающим моментом .
Тогда

Выражение Σ(miri 2 ) называют моментом инерции тела относительно оси и обозначают J :

Момент инерции тела относительно оси есть сумма произведений масс материальных точек, составляющих это тело, на квадрат расстояния от них до этой оси.

В результате получим формулу:

которая называется уравнением вращательного движения твердого тела. В этой формуле J – момент инерции тела относительно оси вращения.

Единица момента инерции — [J] = [mr 2 ] = [m][r 2 ] = кг×м 2 .

Момент инерции играет во вращательном движении такую же роль, какую масса играет в поступательном движении, т. е. момент инерции есть мера инертности вращающегося тела.

В качестве примера определим момент инерции тонкого однородного сплошного диска, радиус которого R , толщина s , масса m , относительно оси, перпендикулярной плоскости диска и проходящей через его центр О (см. рис 3) .

Разобьем диск на элементарные кольца переменного радиуса r , шириной dr и толщиной s . Согласно определению момент инерции такого кольца равен

dJ = dΣ(mir 2 ) = r 2 dΣmi = r 2 dm = r 2 2πr drsρ = 2πsρ r 3 dr ,

где ρ – плотность материала диска.

Просуммировав моменты инерции всех элементарных колец, получим момент инерции всего диска:

J = ∫ 2πsρ r 3 dr = 2πsρ ∫ r 3 dr = 2πsρ r 4 /4 = πsρ r 4 /2 .

Так как масса диска m = πr 2 sρ , то можно записать: J = mR 2 /2 .

Нетрудно понять, что момент инерции однородного сплошного прямоугольного кругового цилиндра радиусом R и массой m любой высоты определяют по такой же формуле. Чтобы убедиться в этом, достаточно мысленно разбить цилиндр плоскостями, параллельными основанию на тонкие диски, и просуммировать моменты инерции всех дисков.

Моменты инерции тел вращения

На основе теоретических выкладок, изложенных выше, мы установили, что момент инерции круглого диска и цилиндрического тела можно определить по формуле

Аналогичные формулы можно вывести для определения моментов инерции других геометрических тел, наиболее часто встречающихся при расчетах и решении задач технической механики.

Моменты инерции для некоторых других однородных тел можно определить по формулам, которые приводятся здесь без вывода.

Шар массой m , радиусом R относительно диаметра:

Тонкий стержень массой m , длиной l относительно оси, проходящей перпендикулярно стержню через его конец:

Тонкая сферическая оболочка массой m , радиусом R относительно диаметра:

Пустотелый вал массой m , наружным радиусом R и радиусом отверстия r относительно оси:

Момент инерции Jz тела относительно какой-либо оси z , параллельной центральной (т. е. проходящей через центр тяжести С тела), равен сумме центрального момента инерции Jc и произведения массы m тела на квадрат расстояния а между этими осями:

Из этой формулы (ее вывод здесь не приводится) следует, что из всех моментов инерции тела относительно параллельных осей наименьшим будет момент инерции относительно центральной оси , т. е. центральный момент инерции.

Иногда момент инерции определяют по формуле: J = mrи 2 , где rи – радиус инерции тела :

Физический смысл радиуса инерции следующий: если массу тела сосредоточить в одной точке (такая масса называется приведенной) и поместить ее от оси вращения на расстоянии, равном радиусу инерции, то момент инерции приведенной массы будет равен моменту инерции данного тела относительно той же оси.

Удвоенный радиус инерции тела называется диаметром инерции : Dи = 2rи .

В практике иногда вместо момента инерции пользуются понятием махового момента GDи 2 .

Маховым моментом называется произведение силы тяжести G вращающегося тела на квадрат его диаметра инерции.

Единица махового момента — Н×м 2 .

Между маховым моментом и моментом инерции существует простая зависимость:

GDи 2 = 4g J = 39,24 J .

Кинетическая энергия твердого тела

Кинетическая энергия твердого тела равна сумме кинетических энергий материальных точек, составляющих данное тело:

Определим выражения для кинетической энергии твердого тела для трех случаев движения.

Тело движется поступательно

Учитывая, что при поступательном движении тела все его точки имеют одинаковую траекторию и одинаковые скорости, можно записать:

Следовательно, при поступательном движении твердого тела его кинетическая энергия вычисляется по той же формуле, что и кинетическая энергия материальной точки.

Тело вращается вокруг неподвижной оси

Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси, равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

Тело движется плоскопараллельно

Как известно из кинематики, сложное плоскопараллельное движение твердого тела в каждый данный момент времени можно считать простейшим вращательным движением вокруг мгновенной оси (метод мгновенных центров скоростей) .
Допустим, что известна скорость vс центра тяжести тела, тогда мгновенная угловая скорость

где ОС – расстояние центра тяжести С тела от мгновенной оси вращения О .

Момент инерции Jо относительно мгновенной оси вращения определяют по формуле:

где Jс — момент инерции относительно центральной оси или центральный момент инерции.

Кинетическую энергию тела, движущегося плоскопараллельно, определяют следующим образом:

Кпп = Jоω 2 /2 = (Jс + mОС 2 ) ω 2 /2 = (Jсω 2 )/2 + mOC 2 /2×vс 2 /ОС 2 ,

Кинетическая энергия твердого тела, движущегося плоскопараллельно, равна сумме кинетических энергий в поступательном движении вместе с центром тяжести и вращательном движении вокруг центральной оси, перпендикулярной основной плоскости.

В заключение сформулируем теорему об изменении кинетической энергии системы тел:

Изменение кинетической энергии системы тел при некотором перемещении равно алгебраической сумме работ всех внешних (активных и реактивных) и внутренних сил, действовавших на систему при указанном перемещении:

Кинетическая энергия системы тел равна сумме кинетических энергий каждого тела в отдельности.

Если тело твердое, то сумма работ его внутренних сил равна нулю. При некоторых связях, называемых идеальными, работа реактивных сил тоже будет равна нулю.


источники:

http://webpoliteh.ru/2-dinamika-postupatelnogo-dvizheniya/

http://k-a-t.ru/tex_mex/22-dinamika_7/index.shtml