Какая система уравнений называется несовместной

Какая система уравнений называется несовместной

линейных уравнений называется совместной, если у неё есть хотя бы одно решение, и несовместной, если решений нет. В примере 14 система совместна, столбик является её решением:

Это решение можно записать и без матриц: x = 2, у = 1.

Систему уравнений будем называть неопределённой, если она имеет более одного решения, и определённой, если решение единственно.

Пример 15. Система является неопределённой. Например, . являются её решениями. Читатель может найти и много других решений этой системы.

Научимся решать системы линейных уравнений сначала в частном случае. Систему уравнений AX = B будем называть крамеровской, если её основная матрица А — квадратная и невырожденная. Другими словами, в крамеровской системе число неизвестных совпадает с числом уравнений и |A| = 0.

Теорема 6 (правило Крамера). Крамеровская система линейных уравнений имеет единственное решение, задаваемое формулами:

где Δ = |A| — определитель основной матрицы, Δi — определитель, полученный из A заменой i-го столбика столбиком свободных членов.

Доказательство проведём для n = 3, так как в общем случае рассуждения аналогичны.

Итак, имеется крамеровская система:

Допустим сначала, что решение системы существует, т. е. имеются

Умножим первое . равенство на алгебраическое дополнение к элементу aii, второе равенство — на A2i, третье — на A3i и сложим полученные равенства:

Какая система уравнений называется несовместной

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 26 Система двух линейных уравнений с двумя неизвестными.

Совместные и несовместные системы.

Системой двух линейных уравнений с двумя неизвестными называется совокупность уравнений вида

Примером системы двух линейных уравнений с двумя неизвестными может служить любая из систем:

Кстати, любую из этих систем можно назвать системой уравнений 1-й степени. Так называются системы вида (1), в которых хотя бы одно из уравнений содержит ненулевой коэффициент при х или при у.

Если в системе (1) оба свободных члена c1 и c2 равны нулю, то система называется однородной.

Если хотя бы один из свободных членов c1 и c2 отличен от нуля, то система называется неоднородной.

Так, из приведенных выше систем (2) — (7) однородными будут системы (2) и (5); все же остальные системы неоднородны.

Решением системы уравнений (1) называется такая пара чисел (х0, у0), которая каждое уравнение этой системы обращает в числовое равенство*:

* Это определение годится и для произвольных систем уравнений с двумя неизвестными.

Например, пара чисел (0, 0) является решением системы уравнений (2), поскольку

Пара чисел (1, 2) будет решением системы (3), так как

Пара чисел (2, 1) не будет решением системы (3), поскольку

Решением системы уравнений (3) не будет и пара чисел (2, 52). Действительно,

100 • 2 — 2 • 52 = 96,

—3• 2 + 57• 52 =/= 111.

Системы могут иметь различное число решений. Например, система уравнений (4) имеет, очевидно, единственное решение: х = 14, у = 1. В самом деле, из второго уравнения этой системы следует, что у = 1. Подставляя затем это значение у в первое уравнение, получаем: х — 2 • 1 = 12, откуда х = 14.

Система уравнений (5) имеет, очевидно, бесконечное множество решений. Действительно, при любом а пара чисел (а, а) обращает оба уравнения системы в числовые равенства. Поэтому любая такая пара чисел (а их бесконечное множество) является решением данной системы.

Наконец, существуют системы, которые вообще не имеют решений. Примером таких систем может служить система (6). Если бы она. имела решение (х0 , у0), то сумма двух чисел х0 и у0 должна была бы равняться одновременно и 0 и 1. Но этого быть не может.

Таким образом, существуют системы линейных уравнений, имеющие ровно одно решение, бесконечное множество решений и, наконец, совсем не имеющие решений.

Система уравнений, имеющая хотя бы одно решение, называется совместной, а не имеющая ни одного решения — несовместной.

Например, системы уравнений (2) и (3) совместны, а система (6) несовместна.

Для каждой однородной системы уравнений

пара чисел (0, 0) является решением. Поэтому любая однородная система уравнений совместна. В частности, совместными являются приведенные выше системы (2) и (5).

Решить систему уравнений

— это значит: 1) выяснить, является ли она совместной, и 2) если она совместна, то найти все ее решения.

220. Можно ли системы:

— назвать системами двух линейных уравнений с двумя неизвестными?

221. Показать, что ни при каких значениях а системы уравнений

не являются однородными.

222. Доказать, что если система двух уравнений 1-й степени с двумя неизвестными имеет нулевое решение (то есть решение х = 0, у = 0), то она является однородной. Верно ли обратное утверждение?

Системы линейных уравнений: основные понятия

— это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

— это последовательность чисел ( k 1, k 2, . kn ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1, x 2, . xn дает верное числовое равенство.

Соответственно, решить систему уравнений — значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» — надо описать, как устроено это множество.

Переменная xi называется , если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной xi должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1, x 3 и x 4. Впрочем, с тем же успехом можно утверждать, что вторая система — разрешенная относительно x 1, x 3 и x 5. Достаточно переписать самое последнее уравнение в виде x 5 = x 4.

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1, x 2 = b 2, . xk = bk ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r k . Остальные ( k − r ) переменных называются свободными — они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2, x 5, x 6 (для первой системы) и x 2, x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1, x 2, . xr — разрешенные, а x r + 1, x r + 2, . x k — свободные, то:

  1. Если задать значения свободным переменным ( x r + 1 = t r + 1, x r + 2 = t r + 2, . xk = tk ), а затем найти значения x 1, x 2, . xr , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все — таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше — неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует метод Гаусса.


источники:

http://oldskola1.narod.ru/Kochetkov1/Kochetkov26.htm

http://www.berdov.com/works/algebra/system_of_linear_equations/