Какие из чисел удовлетворяют уравнение

math4school.ru

Уравнения в целых числах

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

способ перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Поскольку числа 5 и 7 взаимно простые, то

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

и исходное уравнение примет вид

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,

и мы получаем уравнение

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

b 2 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Линейное уравнение с одной переменной с примерами решения

Содержание:

Линейное уравнение с одной переменной

Уравнение — одно из важнейших понятий не только математики, но и многих прикладных наук. Это наиболее удобная математическая модель, наилучшее средство для решения сложнейших задач. Образно говоря, уравнение — это ключ, которым можно отворять тысячи дверей в неизвестное. Основные темы главы:

  • общие сведения об уравнениях;
  • равносильные уравнения;
  • линейные уравнения;
  • решение задач с помощью уравнений.

Общие сведения об уравнении

Алгебра в течение многих столетий развивалась как наука об уравнениях.

Уравнение — это равенство, содержащее не-известные числа, обозначенные буквами.

Неизвестные числа в уравнении называют переменными. Переменные чаще всего обозначают буквами х, у, z (икс, игрек, зет), хотя их можно обозначить и другими буквами.

Примеры уравнений:

Рассмотрим уравнение . Если в нём вместо переменной х написать число 5, то будем иметь правильное числовое равенство . Говорят, что «число 5 удовлетворяет данное уравнение».

Число, удовлетворяющее уравнение, называется его корнем.

Уравнение имеет только один корень:

Уравнение имеет три корня:

Уравнение не имеет ни одного корня, так как при каждом значении переменной х число х + 7 на 7 больше, чем х.

Уравнение имеет бесконечное множество корней.

Решить уравнение — это означает, что надо найти все его корни или показать, что их не существует.

Простейшие уравнения можно решать, пользуясь известными зависимостями между слагаемыми и суммой, между множителями и произведением и т. п.

Пример:

Решите уравнение

Решение:

В данном случае неизвестно вычитаемое. Чтобы найти его, следует от уменьшаемого отнять разность:

Здесь неизвестный множитель х. Чтобы найти его, надо произведение разделить на известный множитель:

Уравнение — это своеобразный кроссворд. Только в клеточки кроссворда вписывают буквы, чтобы получить нужные слова, а в уравнение вместо переменных подставляют числа, чтобы получались правильные равенства.

Например, уравнение можно записать в форме числового кроссворда:

Какое число надо поставить в квадратики, чтобы получилось верное равенство?

Уравнения бывают разных видов, в частности — содержащие неизвестную переменную в квадрате, в кубе, под знаком модуля и т. п. Решим, например, уравнения:

1) Ответим на вопрос: какое число надо возвести в квадрат, чтобы получить 9? Это числа 3 и -3. Это и есть корни данного уравнения.

2) Разделим обе части уравнения Какое число, возведённое в куб, равно 8? Таковым является число 2. Значит, решение данного уравнения х = 2.

3) Если модуль числа x — 2, то это число равно 5 или -5. Имеем: x — 2 = 5, отсюда х = 7, или x — 2 = -5, отсюда х = -3. Значит, уравнение имеет два корня: x = 7 и x = -3.

Пример:

Решите уравнение

Решение:

Пример:

Я задумал число. Если его умножить на 3, от результата отнять 4, то получим 5. Какое число я задумал?

Решение:

Обозначим искомое число буквой х. Если умножить его на 3, то получим Зх. Отняв от результата 4, получим Зх — 4. Имеем уравнение:

Решим это уравнение: Ответ. 3.

Пример:

При каком значении а уравнение будет иметь корень х = 3?

Решение:

Первый способ. Найдём неизвестный множитель х как частное от деления произведения 12 и известного множителя а + 5:

По условию x + 3, поэтому отсюда а = -1.

Второй способ. Подставим в уравнение вместо переменной х число 3:

Решим полученное уравнение относительно переменной а. Имеем:

Ответ. Если а = -1, то уравнение имеет корень х = 3.

Равносильные уравнения

Рассмотрим два уравнения: . Каждое из них имеет один и тот же корень: х = 5.

Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Равносильными считают и такие уравнения, которые не имеют корней.

Чтобы решать более сложные уравнения, нужно уметь заменять их более простыми и равносильными данным. Покажем, как это делается.

Из распределительного закона умножения следует, что при любом значении х числа 2x + 5x = 7x. Поэтому равносильными будут такие, например, уравнения:

Из распределительного закона следует, что при каждом значении х числа . Поэтому равносильны и уравнения:

Вообще, если в любой части уравнения свести подобные слагаемые или раскрыть скобки, то получим уравнение, равносильное данному.

Прибавив к обеим частям верного числового равенства одно и то же число, получим также верное равенство. Подобно этому тела с равными массами, положенные на чаши уравновешенных весов, не нарушают равновесия (рис. 4).

Отсюда следует, что когда, например, к обеим частям уравнения (1) прибавить по -10y, то получим уравнение , равносильное данному. А прибавить к левой и правой частям уравнения (1) по -10y — это то же самое, что перенести 10y из правой части уравнения в левую с противоположным знаком. Вообще, если из одной части уравнения в другую перенести любой его член с противоположным знаком, то получим уравнение, равносильное данному.

Вспомним также, что обе части числового равенства можно умножить или разделить на одно и то же число, отличное от нуля. Поэтому если обе части уравнения умножить иди разделить на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному. Например, умножив обе части уравнения получим уравнение имеющее такой же корень, как и данное. А если обе части уравнения разделим на 20, то будем иметь более простое уравнение , равносильное данному.

Всегда справедливы такие основные свойства уравнений.

  1. В любой части уравнения можно свести подобные слагаемые или раскрыть скобки, если они есть.
  2. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
  3. Обе части уравнения можно умножить или разделить на одно и то число, отличное от нуля.

В результате таких преобразований всегда получаем уравнение, равносильное данному.

Сформулированные свойства часто используют для решения уравнений. Для примера решим уравнение:

Решение:

Умножим обе части уравнения на 6:

Перенесём 4х в правую часть, а -1 — в левую с противоположными знаками:

Сведём подобные члены:

Разделим обе части уравнения на 2:

Ответ.

Откуда произошло название науки — алгебра? От названия книги об уравнениях узбекского математика IX в. Мухаммеда аль-Хо-резми (Мухаммеда из Хорезма). В те далёкие времена отрицательные числа не считались настоящими. Поэтому когда в результате перенесения отрицательного члена уравнения из одной его части в другую этот член становился положительным, считалось, что Qh восстанавливался, переходил из ненастоящего в настоящий. Такое преобразование уравнений Мухаммед аль-Хорезми назвал восстановлением (аль-джебр). Свойство об уничтожении одинаковых членов уравнения в обеих частях он назвал противопоставлением (аль-мукабала). Книга об этих преобразованиях называлась «Китаб мухтасар аль-джебр ва-л-мукабала» («Книга о восстановлении и противопоставлении»). Со временем её перевели на латинский Язык, взяв для названия только одно слово, которое стали писать Algebr. Отсюда и пошло название науки — алгебра. Преобразование «аль,-джебр» стало важным шагом в развитии алгебры, так как упростило решение уравнений.

Алгебра, арифметика, геометрия, математический анализ — основные составляющие математики (рис. 5). Арифметику — науку о числах и вычислениях — вы уже изучали на уроках математики. В 7-9 классах будете изучать алгебру и геометрию, с математическим анализом ознакомитесь в старших классах.

Пример:

Равносильны ли уравнения:

а)

б)

Решение:

а) Если раскрыть скобки в первом уравнении, то получим второе. Значит, уравнения равносильны.

б) Решим первое уравнение:

отсюда х = 1. Итак, данные уравнения не равносильны.

Ответ. а) Равносильны; б) не равносильны.

Пример:

Решение:

Раскроем скобки и приведём подобные слагаемые: Перенесём слагаемое 3 в правую часть, а Зх — в левую, изменив их знаки на противоположные:

Разделим обе части уравнения на 2. Получим: х = 6. Ответ. х = 6.

Пример:

Найдите корни уравнения:

Решение:

Умножим обе части уравнения на 3. Получим:

Линейные уравнения

Уравнение вида ax = b, где a и b — данные числа, называется линейным уравнением с переменной х.

Числа a и b — коэффициенты уравнения ax = b , a— коэффициент при переменной х,b — свободный член уравнения.

Если то уравнение ах = b называют уравнением первой степени с одной переменной. Его корень

Каждое уравнение первой степени с одной переменной имеет один корень. Линейное уравнение может не иметь корней, иметь один или бесконечное множество корней.

Линейное уравнение ах = b:

Например, уравнение 0x = 5 не имеет ни одного корня, так как не существует числа, которое при умножении на 0 в произведении давало бы 5.

Уравнение 0x = 0 имеет бесконечное множество корней, так как его удовлетворяет любое значение переменной х.

Решая уравнение, его сначала стараются упростить, свести к линейному. Делают это преимущественно в такой последовательности.

  1. Избавляются от знаменателей (если они есть).
  2. Раскрывают скобки (если они есть).
  3. Переносят члены, содержащие переменные, в левую часть уравнения, а не содержащие — в правую.
  4. Приводят подобные слагаемые.

В результате такого преобразования получают уравнение, равносильное данному; его корни являются также корнями данного уравнения.

Пример 1. Решите уравнение:

Решение. Умножим обе части уравнения на 12 — наименьшее общее кратное знаменателей 2, 3, 4 и 12:

Если коэффициенты уравнения многозначные, его удобно решать, пользуясь калькулятором. Пример 2. Решите уравнение

Ответ.

Найденное значение корня — приближённое. Точное значение пришлось бы записать в виде смешанной дроби, а именно Решая прикладные задачи, ответ обычно округляют и записывают, например, так:

Уравнение первой степени — это отдельный вид линейных уравнений. Соотношение между этими двумя видами уравнений наглядно проиллюстрировано на рисунке 7.

Ниже приведём примеры линейных уравнений, которые не являются уравнениями первой степени.

Уравнения первой степени

Уравнения не линейные,но сводящиеся к линейным.

Почему уравнение вида ах = b называют линейными, станет понятно, когда вы ознакомитесь с линейными функциями.

Пример:

а) б)

Решение:

а)

— уравнение корней не имеет.

б)

— любое число удовлетворяет уравнение.

Ответ. а) Уравнение корней не имеет;

б) уравнение имеет бесконечное множество корней.

Пример:

Найдите два числа, полусумма которых вдвое больше их полуразности, которая равна 35.

Решение:

Если полуразность чисел равна 35, то разность будет вдвое больше, а именно — 70. Обозначим меньшее число буквой х, тогда большее будет равно

70 + х. По условию задачи или , отсюда х = 35 — меньшее число, 70 + 35 = 105 — большее число. Ответ. 35 и 105.

Решение задач с помощью уравнений

Чтобы решить задачу с помощью уравнения, сначала надо составить соответствующее этой задаче уравнение. Образно говоря, надо перевести задачу с обычного языка на язык алгебры, то есть составить математическую модель данной задачи. Как это можно сделать, покажем на нескольких примерах.

Пример:

На двух токах 1000т зерна. Сколько зерна на каждом току, если на первом его на 200т меньше, чем на втором?

Решение:

Пусть на первом току зерна. Тогда на втором — а на обоих — Имеем уравнение:

отсюда

Ответ.

Уравнение составленное по условию задачи, — это математическая модель данной задачи.

Составить уравнения часто помогает рисунок или схема (рис. 10)

Данную задачу можно решить и другими способами.

Если на втором току есть у т зерна, то на первом . Так как на втором току зерна на 200 т больше, то отсюда

Рисунок 10, рисунок 11., уравнение — это три разные математические модели прикладной задачи 1. В математике прикладными называют задачи, условия которых содержат не математические понятия.

Модель всегда подобна оригиналу. В ней отображаются те или иные важные свойства исследуемого объекта. Такими являются уменьшенные модели автомобиля, самолёта, строения. Глобус — модель Земли, кукла — модель человека. Если модель создана на основе уравнений, формул или других математических понятий, её называют математической моделью.

Для решения задач на движение также используют разные модели. Надо помнить, что при равномерном движении пройденное телом расстояние равно произведению скорости на время При этом все значения величин следует выражать в соответствующих единицах измерения. Например, если время дано в часах, а расстояние — в километрах, то скорость надо выражать в километрах в час. Если тело движется при наличии течения, то его скорость движения по течению (против течения) равна сумме (разности) его собственной скорости и скорости течения. С помощью схем многие задачи на движение можно решить устно (№ 124). Для решения некоторых сложных задач требуется построение нескольких моделей.

Рассмотрим задачу, составить уравнение к которой помогает таблица — ещё один вид математических моделей.

Пример:

Катер должен был пройти расстояние между городами со скоростью 15 км/ч, а на самом деле шёл со скоростью 12 км/ч и потому опоздал на 3 ч. Найдите расстояние между городами.

Ответ. Построим таблицу и заполним её в соответствии с условием задачи.

Катер шёл на 3 ч дольше, чем должен был идти. Этому условию соответствует уравнение:

Решим уравнение:

Ответ. 180 км.

Решив задачу с помощью уравнения, нужно всегда анализировать полученное значение неизвестного. Может получиться, что найденный корень уравнения не соответствует условию задачи.

Пример:

Периметр треугольника равен 17 см. Найдите его стороны, если одна из них короче другой на 2 см, а третьей — на б см.

Решение:

Пусть длина самой короткой стороны треугольника равна х см. Тогда длины других сторон соответственно будут равны .Получим уравнение:

Решим его:

Если длина первой стороны 3 см, то вторая и третья соответственно будут равны 5 и 9 см.

Существует ли треугольник с такими сторонами? Нет, так как каждая сторона треугольника короче суммы двух других, а

Ответ. Задача не имеет решения.

Решение прикладных задач методом математического моделирования состоит из трёх этапов:

  1. создание математической модели данной задачи;
  2. решение соответствующей математической задачи;
  3. анализ ответа.

Иногда с помощью уравнения решают не всю задачу, а только её часть.

Покажем, например, как можно заполнять пустые клеточки магического квадрата — таблицы чисел с одинаковым количеством строк столбцов, с одинаковой суммой чисел во всех строках, столбцах и по диагоналям.

Пример:

Перерисуйте в тетрадь рисунок 12 и в его пустые клеточки впишите такие числа, чтобы получился магический квадрат.

Решение:

Обозначим буквой х число в правой верхней клеточке Тогда сумма всех чисел первой строки будет равна 5+6+x, или 11 + x Такими же должны быть суммы и в каждой диагонали, и в среднем столбце поэтому в нижней строке следует написать 4, x — 2 , x — 1 (рис. 13). Та как сумма чисел должна быть равна 11 + х, то составим уравнение:

Подставим вместо х его значение 10, после чего пустые клеточки рисунка 14 заполнить нетрудно. В данном случае уравнение — модель части сформулированной задачи, дающая возможность вычислит только значение х.

Пример:

Катер прошёл расстояние между пристанями по течению реки за 2 ч, а обратно — за 2,5 ч. Найдите собственную скорость катера, если скорость течения равна 2 км/ч.

Решение:

Пусть собственная скорость катера равна x км/ч. Тогда:

— его скорость по течению;

— скорость катера против течения;

— такое расстояние катер прошёл по течению;

— такое расстояние катер прошёл против течения.

Расстояния равны. Итак, получим уравнение

Пример:

Решите математический кроссворд (рис. 15).

Решение:

В кружки следует вписать два числа так, чтобы их сумма была равна 200, а разность — 10. Если второе число обозначим буквой х, то первое будет равно 200 — х. Их разность равна 10, следовательно, , отсюда 2 Ответ на рисунке 16.

Исторические сведения:

Уравнения первой степени с одной переменной люди научились решать очень давно. Египетские учёные почти четыре тысячи лет тому назад искомое неизвестное число называли «аха» (в переводе — «куча») и обозначали специальным знаком. В папирусе, дошедшем до нас, есть такая задача: «Куча и её седьмая часть составляют 19. Найдите кучу». Теперь бы мы сформулировали её так: «Сумма неизвестного числа и его седьмой части равна 19. Найдите неизвестное число».

Задача сводится к уравнению

Подобные задачи умели решать учёные Древней Греции, древних Индии, Китая. Древнегреческий математик Диофант (III в.) решал и более сложные уравнения, в частности такие, которые в современных символах имеют вид У Диофанта уравнение записывалось таким способом:

Аль-Хорезми и многие его преемники все уравнения записывали словами, не используя математических знаков.

От фамилии аль-Хорезми происходит ещё один важный для современной науки термин — алгоритм. Так называют совокупность правил, пользуясь которыми можно решить любую задачу из определённого класса задач. Например, известный вам способ умножения чисел «столбиком», способ определения наибольшего общего делителя двух или нескольких чисел — это алгоритмы. В современной науке понятие «алгоритм» играет огромную роль, существует даже специальная область математики — теория алгоритмов. Подробнее с алгоритмами вы ознакомитесь в старших классах.

Сначала алгеброй называли науку, изучающую различные способы решения уравнений. Со временем она значительно расширилась, обогатилась новыми идеями. Теперь уравнение — только одна из составляющих алгебры.

Напомню:

Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами.

Числа, удовлетворяющие уравнение, — его корни. Решить уравнение — это значит найти все его корни или показать, что их не существует.

Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Уравнения, которые не имеют корней, также считают равносильными друг другу.

Основные свойства уравнений.

  1. В любой части уравнения можно привести подобные слагаемые или раскрыть скобки, если они есть.
  2. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
  3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.

Уравнение вида ах = b, где а и b — произвольные числа, называют линейным уравнением с переменной х. Если , то уравнение ах = b называют уравнением первой степени с одной переменной.

Каждое уравнение первой степени ах = b имеет один корень . Линейное уравнение может иметь один корень, бесконечно много корней или не иметь ни одного корня.

Решение прикладных задач методом математического I моделирования состоит из трёх этапов:

  1. создание математической модели данной задачи;
  2. решение соответствующей математической задачи;
  3. анализ ответа.

Линейное уравнение с одной переменной

Рассмотрим три уравнения:

Очевидно, что число -1,5 является единственным корнем первого уравнения.

Поскольку произведение любого числа на нуль равно нулю, то корнем второго уравнения является любое число.

Понятно, что третье уравнение корней не имеет.

Несмотря на существенное различие полученных ответов, приведенные уравнения внешне похожи: все они имеют вид где — переменная, — некоторые числа.

Уравнение вида где — переменная, — некоторые числа, называют линейным уравнением с одной переменной.

Вот еще примеры линейных уравнений:

Текст, выделенный жирным шрифтом, разъясняет смысл термина «линейное уравнение». В математике предложение, раскрывающее суть нового термина (слова, понятия, объекта), называют определением.

Итак, мы сформулировали (или говорят: «дали») определение линейного уравнения.

Заметим, что, например, уравнения линейными не являются.

Если то, разделив обе части уравнения на получим . Отсюда следует: если то уравнение имеет единственный корень, равный

Если же то линейное уравнение приобретает такой вид: Здесь возможны два случая:

В первом случае получаем уравнение Тогда, если то уравнение имеет бесконечно много корней: любое число является его корнем.

Во втором случае, когда при любом значении получим неверное равенство Отсюда, если и то уравнение корней не имеет.

Следующая таблица подытоживает приведенные рассуждения.

Пример:

1)

Решение:

1) Так как произведение нескольких множителей равно нулю, когда хотя бы один из множителей равен нулю, получаем:

2) Учитывая, что модуль только чисел 4 и -4 равен числу 4, имеем:

Обратим ваше внимание на то, что рассмотренные уравнения не являются линейными, однако решение каждого из них сводится к решению линейных уравнений.

Пример:

Решение:

1) При уравнение принимает вид В этом случае корней нет. При имеем

Ответ: если , то уравнение не имеет корней; если , то

2) При уравнение принимает вид В этом случае корнем уравнения является любое число. При имеем

Ответ: если , то — любое число; если , то

Решение задач с помощью уравнений

Вам много раз приходилось решать задачи с помощью составления уравнений (текстовые задачи). И разнообразие решенных задач является лучшим подтверждением эффективности и универсальности этого метода. В чем же заключается секрет его силы?

Дело в том, что условия непохожих друг на друга задач удается записать математическим языком. Полученное уравнение — это результат перевода условия задачи с русского языка на математический.

Часто условие задачи представляет собой описание какой-то реальной ситуации. Составленное по этому условию уравнение называют математической моделью этой ситуации.

Конечно, чтобы получить ответ, уравнение надо еще решить. Для этого в алгебре разработаны различные методы и приемы. С некоторыми из них вы уже знакомы, многие другие вам еще предстоит изучить.

Найденный корень — это еще не ответ задачи. Следует выяснить, не противоречит ли полученный результат реальной ситуации, описанной в условии.

Рассмотрим, например, такие задачи:

  1. За 4 ч собрали 6 кг ягод. Сколько ягод собирали за каждый час?
  2. Несколько мальчиков собрали 6 кг ягод. Каждый из них собрал по 4 кг. Сколько мальчиков собирали ягоды?

Обе задачи приводят к одному и тому же уравнению , корнем которого является число 1,5. Но в первой задаче решение «полтора килограмма ягод за час» является приемлемым, а во второй — «ягоды собирали полтора мальчика» — нет.

При решении задач на составление уравнений удобно пользоваться следующей схемой:

  1. по условию задачи составить уравнение (сконструировать математическую модель задачи);
  2. решить уравнение, полученное на первом шаге;
  3. выяснить, соответствует ли найденный корень смыслу задачи, и дать ответ.

Эту последовательность действий, состоящую из трех шагов, можно назвать алгоритмом решения текстовых задач.

Пример:

Рабочий должен был выполнить заказ за 8 дней. Однако, изготавливая ежедневно 12 деталей сверх нормы, он уже за 6 дней работы не только выполнил заказ, но и изготовил дополнительно 22 детали. Сколько деталей ежедневно изготавливал рабочий?

Решение:

Пусть рабочий изготавливал ежедневно деталей. Тогда по плану он должен был изготавливать ежедневно деталей, а всего их должно было быть изготовлено На самом деле он изготовил деталей. Так как по условию задачи значение выражения на 22 больше значения выражения то

Ответ: 37 деталей.

Пример:

Велосипедист проехал 65 км за 5 ч. Часть пути он проехал со скоростью 10 км/ч, а оставшийся путь — со скоростью 15 км/ч. Сколько времени он ехал со скоростью 10 км/ч и сколько — со скоростью 15 км/ч?

Решение:

Пусть велосипедист ехал ч со скоростью 10 км/ч. Тогда со скоростью 15 км/ч он ехал ч. Первая часть пути составляет км, а вторая — км. Имеем:

Следовательно, со скоростью 10 км/ч велосипедист ехал 2 ч, а со скоростью 15 км/ч — 3 ч.

Что такое уравнение, линейное уравнение, что значит решить уравнение

Алгебра длительное время была частью арифметики — одной из древнейших математических дисциплин. Слово «арифметика» в переводе с греческого означает «искусство чисел». Алгебру же после выделения ее в отдельную науку рассматривали как искусство решать уравнения.

В данном разделе мы выясним, что такое уравнение, линейное уравнение, что значит решить уравнение, как решать задачи с помощью уравнений.

Что такое уравнение

Масса 4 больших и 15 малых деталей равна 270 г. Масса большой детали в три раза больше массы малой. Какова масса малой детали?

Пусть масса малой детали равна г, тогда масса большой — г. Масса 15 малых деталей равна г, а 4 больших — (г). По условию задачи сумма этих масс равна 270 г:

.

Мы пришли к равенству, которое содержит неизвестное число, обозначенное буквой (еще говорят: равенство содержит переменную ). Чтобы решить задачу, нужно найти значение , при котором равенство является верным числовым равенством.

Равенство с неизвестным значением переменной называют уравнением с одной переменной (или уравнением с одним неизвестным).

Корень уравнения

Рассмотрим уравнение . Подставляя вместо переменной некоторые числа, будем получать числовые равенства, которые могут быть верными или неверными. Например:

  • при получим равенство , которое является верным;
  • при получим равенство , которое является неверным.

Значение переменной, при котором уравнение превращается в верное числовое равенство, называют корнем, или решением уравнения.

Итак, число 3 является корнем уравнения , а число 4 — нет.

Количество корней уравнения

Уравнения могут иметь разное количество корней. Например:

  • уравнение имеет только один корень — число 3;
  • уравнение имеет два корня — числа 2 и 6;

уравнению удовлетворяет любое число ; говорят, что это уравнение имеет бесконечно много корней.

Уравнение может и не иметь корней. Рассмотрим, например, уравнение . Для любого числа значение левой части уравнения на 1 больше значения правой части. Следовательно, какое бы число мы не взяли, равенство будет неверным. Поэтому это уравнение не имеет корней.

Решить уравнение — значит найти все его корни или доказать, что корней нет.

Решим уравнение, составленное выше по условию задачи о больших и малых деталях:

Таким образом, масса малой детали равна 10 г.

Примеры решения уравнений:

Пример №86

Является ли число 2,5 корнем уравнения ?

Решение:

Если , то:

значение левой части уравнения равно: ; значение правой части равно: . Значения обеих частей уравнения равны, поэтому — корень данного уравнения.

Пример №87

а) ; б) ; в) .

а) ; ; ; ; . Ответ. 11.

б) Произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю. Следовательно, или ; или . Ответ.-0,5; 2.

в) ; ; . Квадрат числа не может быть равен отрицательному числу. Поэтому данное уравнение корней не имеет. Ответ. Уравнение корней не имеет.

Решение уравнений. Свойства уравнений

Решение любого уравнения сводится к выполнению определенных преобразований, в результате которых данное уравнение заменяют более простым.

Решим, например, уравнение:

. (1)

1. Раскроем скобки:

. (2)

2. Приведем подобные слагаемые в левой части уравнения:

. (3)

3. Перенесем слагаемые с переменной в левую часть уравнения, а без переменной — в правую, изменив их знаки на противоположные:

. (4)

4. Приведем подобные слагаемые в каждой части уравнения:

. (5)

5. Разделим обе части уравнения на 2:

.

Таким образом, уравнение (1) имеет единственный корень — число 4.

При решении уравнения (1) мы выполняли некоторые преобразования: раскрывали скобки, приводили подобные слагаемые, переносили слагаемые из одной части уравнения в другую, делили обе части уравнения на число. С этими преобразованиями связаны следующие основные свойства уравнений:

Свойство 1. В любой части уравнения можно раскрыть скобки или привести подобные слагаемые.

Свойство 2. Любое слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак на противоположный.

Свойство 3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.

Если в некотором уравнении выполнить одно из преобразований, указанных в свойствах 1, 2 или 3, то получим уравнение, имеющее те же корни, что и начальное уравнение.

Решая уравнение (1), мы последовательно получали уравнения (2), (3), (4), (5). Все они вместе с уравнением (1) имеют один и тот же корень — число 4.

Для тех, кто хочет знать больше

Свойства уравнений можно обосновать, используя следующие свойства числовых равенств:

Если а — b — верное числовое равенство и с — некоторое число, то:

Если к обеим частям верного числового равенства прибавить одно и то же число, то получим верное числовое равенство.

Если обе части верного числового равенства умножить на одно и то же число, то получим верное числовое равенство.

Если обе части верного числового равенства разделить на одно и то же число. отличное от нуля то получим верное числовое равенство.

Из первого свойства числовых равенств можно получить такое следствие: если из одной части верного числового равенства перенести в другую часть слагаемое, изменив его знак на противоположный, то получим верное числовое равенство.

Используя свойства числовых равенств, докажем, например, что уравнение

(6)

имеет тс же корни, что и уравнение

. (7)

(Это свойство 2 для уравнения .)

• Пусть — произвольный корень уравнения (6). Тогда — верное числовое равенство. Перенесем слагаемое в левую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство , из которого следует, что является корнем уравнения (7). Мы доказали, что произвольный корень уравнения (6) является корнем уравнения (7).

Наоборот, пусть — произвольный корень уравнения (7). Тогда числовое равенство является верным. Перенесем слагаемое в правую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство , из которого следует, что является корнем уравнения (6). Мы доказали, что произвольный корень уравнения (7) является корнем уравнения (6). Таким образом, уравнения (6) и (7) имеют одни и тс же корни. • Уравнения, имеющие одни и те же корни, называют равносильными. Следовательно, уравнения (6) и (7) являются равносильными.

Примеры решения уравнений:

Пример №88

Решить уравнение .

Решение:

Умножив обе части уравнения на 14, получим:

; ; ;

Пример №89

Решить уравнение .

Решение:

Разделив обе части уравнения на 25, получим:

Линейные уравнения с одной переменной

Линейные уравнения с одной переменной

Левая часть каждого из этих уравнений является произведением некоторого числа и переменной, а права часть — некоторым числом. Такие уравнения называют линейными уравнениями с одной переменной.

Определение:

Уравнение вида , где — некоторые известные числа, а — переменная, называют линейным уравнением с одной переменной.

Числа а и b называют коэффициентами линейного уравнения.

Когда при решении уравнения выполняют некоторые преобразования, приводя данное уравнение к более простому, то во многих случаях этим «простым» уравнением является именно линейное уравнение.

Выясним, сколько корней может иметь линейное уравнение. Для этого рассмотрим сначала три следующих уравнения:

1) ; 2) ; 3) .

  1. Чтобы решить уравнение , достаточно обе его части разделить на 3. Получим один корень:
  2. В уравнении значение левой части равно 0 для любого числа . Правая же часть уравнения не равна нулю. Следовательно, данное уравнение корней не имеет.
  3. Равенство является верным для любого числа . Поэтому корнем уравнения является любое число (уравнение имеет бесконечно много корней).

В общем случае для линейного уравнения получим:

  • если , то уравнение имеет единственный корень ;
  • если , a , то уравнение корней не имеет;
  • если и , то корнем уравнения является любое число (уравнение имеет бесконечно много корней).

Итог: количество корней линейного уравнения

— линейное

КоэффициентыКорни — единственный корень и корней нет и корнем является любое число (уравнение имеет бесконечно много корней)

Уравнения с модулями

Напомним, что модулем положительного числа и числа 0 является это же число, модулем отрицательного числа является противоположное ему число:

Так, . Модуль любого числа является неотрицательным числом, то есть .

Уравнения содержат переменную под знаком модуля. Такие уравнения называют уравнениями с модулем.

Уравнение вида . Решая уравнение вида , где а — некоторое известное число, можно использовать геометрический смысл модуля числа: модуль числа — это расстояние от начала отсчета до точки, изображающей число на координатной прямой.

Рассмотрим уравнение . На координатной прямой существуют две точки, расположенные на расстоянии 2 единицы от начала отсчета. Это точки, соответствующие числам 2 и -2 (рис. I). Поэтому уравнение имеет два корня: 2 и -2.

Уравнение имеет один корень — число 0, а уравнение не имеет корней (модуль любого числа является неотрицательным числом и не может быть равен -2).

В общем случае уравнение :

  • имеет два корня а и , если ;
  • имеет один корень 0, если ;
  • не имеет корней, если

Решение уравнений с модулями, исходя из определения модуля числа

(1)

Это уравнение нельзя привести к виду , где а — некоторое число. Для его решения рассмотрим два случая.

1. Если — неотрицательное число (), то и уравнение (1) принимает вид , откуда . Число 1 — неотрицательное (удовлетворяет неравенству ), поэтому оно является корнем уравнения (1).

2. Если — отрицательное число (), то и уравнение (1) принимает вид , откуда . Число 2 не является отрицательным (не удовлетворяет неравенству ), поэтому оно не является корнем уравнения (1).

Таким образом, уравнение имеет один корень .

Примеры выполнения заданий:

Пример №90

Решить уравнение .

Решение:

Пример №91

Решить уравнение .

Решение:

Ответ. Уравнение корней не имеет.

Пример №92

Решить уравнение

Решение:

Ответ. Корнем уравнения является любое число.

Пример №93

Решить уравнение .

Решение:

Умножив обе части уравнения на 36 (36 — наименьшее общее кратное знаменателей дробей), получим:

Итог. При решении уравнения нужно придерживаться следующей схемы:

  1. Если в уравнении есть выражения с дробными коэффициентами, то умножить обе его части на наименьший общий знаменатель дробей.
  2. Раскрыть скобки.
  3. Перенести все слагаемые, содержащие переменную, в одну часть уравнения (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (в правую).
  4. Привести подобные слагаемые.
  5. Разделить обе части уравнения на коэффициент при переменной, если он не равен нулю. Если же он равен 0, то уравнение или не имеет корней, или его корнем является любое число.
Пример №94

Решить уравнение .

Решение:

Если модуль числа равен 3, то этим числом является 3 или -3. Поэтому возможны два случая:

1) 2)

Пример №95

Решить уравнение .

Решение:

Решение задач с помощью уравнений

При решении задач с помощью уравнений в большинстве случаев придерживаются следующей схемы:

  1. выбирают неизвестное и обозначают его буквой (или какой-нибудь другой буквой);
  2. используя условие задачи, составляют уравнение;
  3. решают уравнение и отвечают на вопросы, поставленные в задаче.
Пример №96

В двух цистернах находится 66 т бензина, причем в первой бензина в 1,2 раза больше, чем во второй. Сколько бензина в каждой цистерне?

Решение:

Пусть во второй цистерне т бензина, тогда в первой — т. В двух цистернах вместе находится т бензина, что по условию равно 66 т. Получаем уравнение:

Решим это уравнение: .

Таким образом, во второй цистерне 30 т бензина, а в первой — 1,2 • 30 = 36 (т).

Ответ. 36 т, 30 т.

Примечание. Чтобы решить задачу 1, можно рассуждать и так. Пусть во второй цистерне т бензина, тогда в первой — т. В первой цистерне бензина в 1,2 раза больше, чем во второй, поэтому . Остается решить это уравнение и записать ответ задачи.

Пример №97

Из. города А в город В выехал грузовой автомобиль. Через 30 мин навстречу ему из города В выехал легковой автомобиль, скорость которого на 25 км/ч больше скорости грузового. Автомобили встретились через 1,3 ч после выезда грузового автомобиля из города А. Найти расстояние между городами, если за все время движения грузовой автомобиль проехал на 10 км больше, чем легковой.

Решение:

Пусть скорость грузового автомобиля км/ч, тогда скорость легкового — км/ч.

До момента встречи грузовой автомобиль был в пути 1,3 ч, а легковой на 30 мин = 0,5 ч меньше: 1,3 ч — 0,5 ч = 0,8 ч. За 1,3 ч грузо&ой автомобиль проехал 1,3 км, а легковой за 0,8 ч — 0,8 км. Поскольку грузовой автомобиль проехал на 10 км больше, чем легковой, то разность расстояний 1,3 км и 0,8 км равна 10 км.

Скорость, км/чВремя, чПуть, км
Грузовой автомобиль1,31,3
Легковой автомобиль0,8

Получили уравнение:

Решим это уравнение:

Итак, скорость грузового автомобиля равна 60 км/ч.

Расстояние между городами равно сумме расстояний, которые проехали оба автомобиля, то есть км. Поскольку = 60, то получим:

Примечание. Опираясь на решение задач 1 и 2, проанализируем первые два шага приведенной выше схемы решения задач с помощью уравнений.

1) Выбор неизвестного, которое мы обозначали буквой, в решениях этих задач был разным. В задаче 1 мы обозначили через т одну из искомых величин (массу бензина во второй цистерне). В задаче 2 искомой величиной является расстояние между городами. Если эту величину обозначить через км, то при составлении уравнения рассуждения будут довольно сложными. Мы же через км/ч обозначили неизвестную скорость грузового автомобиля, выразили через расстояния, пройденные автомобилями, и составили уравнение, зная, что разность расстояний равна 10 км.

Таким образом, обозначать через (или какую-нибудь другую букву) желательно ту неизвестную величину, через которую легче выражаются величины, значения которых можно приравнять.

2) Чтобы составить уравнение, сначала выражаем через те величины, значения которых будем приравнивать. После этого записываем уравнение.

Математическая модель:

Вам, наверное, уже приходилось видеть модели корабля, самолета, автомобиля, изготавливать модели куба, прямоугольного параллелепипеда. Каждая модель, в зависимости от ее предназначения, отображает некоторые свойства оригинала.

Математическая модель — это описание некоторого реального объекта или процесса на языке математики.

Опишем на языке математики задачу 2. Определяя скорость грузового автомобиля в этой задаче, мы обозначили ее через км/ч. Скорость легкового автомобиля на 25 км/ч больше, чем скорость грузового, что на языке математики записывают так: скорость легкового автомобиля равна км/ч.

На языке математики расстояние, пройденное грузовым автомобилем, записывают: 1,3 км, а расстояние, пройденное легковым автомобилем, — км.

По условию задачи грузовой автомобиль проехал на 10 км больше, чем легковой, что на языке математики можно выразить так: разность расстояний, пройденных грузовым и легковым автомобилями, равна 10 км, и записать: .

Полученное уравнение и является математической моделью задачи на движение автомобилей. Построив математическую модель, мы свели задачу на движение к математической задаче — решить уравнение.

Кроме уравнений, есть и другие виды математических моделей, с которыми ми познакомимся в процессе изучения алгебры.

Интересно знать. История науки знает немало примеров, когда в рамках удачно построенной математической модели с помощью вычислений, как говорят, «на кончике пера», удавалось предвидеть существование новых физических объектов и явлений. Так, опираясь на математические модели, астрономы Дж. Адамс (Англия) в 1845 году и У. Леверье (Франция) в 1846 году независимо друг от друга пришли к выводу о существовании неизвестной тогда еще планеты и указали ее расположение на небе. По расчетам Леверье астроном Г. Галле (Германия) нашел эту планету. Ее назвали Нептуном.

Интересно знать

На протяжении многих столетий алгебра была наукой об уравнениях и способах их решения. Линейные уравнения умели решать еще древние египтяне и вавилоняне (1 тысячелетие до н. э.).

О состоянии математики в Древнем Египте свидетельствуют математические тексты, написанные на особой бумаге — папирусе, изготовленном из стеблей растения, которое имеет такое же название. Написание некоторых папирусов относят к XVIII в. до н. э., хотя описанные в них математические факты были известны древним египтянам задолго до их изложения.

Один из таких папирусов был найден в 1872 году в одной из египетских пирамид. Его приобрел английский коллекционер древностей Райнд, и сейчас >тот папирус — папирус Райнда — хранится в Лондоне.

В папирусе Райнда особое место занимают задачи на «аха» («хау»).

Это задачи, которые решаются с помощью линейных уравнений с одним нечестным. «Аха» («хау») означает «совокупность», «куча» (неизвестная величина). Пример такой задачи: «Куча. Ее, ее , ее и ее целое. Это 33». Если обозначить «кучу» — неизвестную величину — через , то получим уравнение: .

Более заметные успехи в создании начал алгебры были достигнуты в Древнем Вавилоне. До нашего времени сохранились вавилонские глиняные плитки с комбинациями клиновидных черточек — клинописью. Такие плитки имели в Вавилоне то же значение, что и папирусы в Египте. На плитках встречаются и и клинописные математические тексты, которые свидетельствуют, что уже более 4000 лет гому назад в Вавилоне могли решать уравнения, содержащие квадрат неизвестного.

Начиная с VII в. до н. э., древние греки после знакомства с достижениями египтян и вавилонян в сфере математики продолжили их науку. При этом достаточно мало греческих ученых при решении задач использовали уравнения. Одним из тех, кто использовал уравнения, был древнегреческий математик Диофант.

О Диофанте известно мало, даже точно не установлены годы его жизни. Кое-что о жизни Диофанта и о том, сколько он прожил лет, можно узнать из надписи на его могильной плите.

Надпись на плитеЯзыком алгебры
Путник! Здесь погребен Диофант. И числа поведать могут, о чудо, сколь долог был век его жизни.
Часть шестую его представляло прекрасное детство.
Двенадцатая часть протекла его жизни — покрылся пухом тогда подбородок.
Седьмую в бездетном браке провел Диофант.
Прошло пятилетие; он был осчастливлен рождением прекрасного первенца-сына,5
коему рок дал половину лишь жизни прекрасной и светлой на земле по сравнению с отцом.
И в печали глубокой старец земного удела конец воспринял, переживши года четыре с тех пор, как сына лишился.4
Скажи, сколько лет жизни достигнув, смерть воспринял Диофант?

Греческую науку в Средневековье заимствовали ученые Востока — индийцы и арабы. Именно на Востоке в IX в. алгебра становится самостоятельной математической наукой.

Происхождение слова «алгебра» также связано с Востоком.

Город Багдад в VII-IX в. был столицей могущественного Арабского халифата. Багдадские халифы оказывали содействие развитию природоведения и математических наук. За годы правления халифа Гаруна аль-Рашида в Багдаде была оборудована большая библиотека, а халиф аль-Мамун организовал своеобразную академию — «Дом мудрости» и построил хорошо оборудованную обсерваторию.

При дворе аль-Мамуна жил и работал ученый Мухаммед бен Муса аль-Хорезми (около 780 — около 850). Он собрал и систематизировал способы решения уравнений и описал их в работе «Китаб аль-джебр аль-мукабала», что дословно означает «Книга о восстановлении и противопоставлении». В то время отрицательные числа считались «ненастоящими», и, когда в процессе решения уравнения в какой-то его части появлялось отрицательное число, его нужно было перенести в другую часть. Эту операцию называли восстановлением (аль-джебр), то есть переведением «ненастоящих» (отрицательных) чисел в «настоящие» (положительные). С помощью противопоставления (аль-мукабала) отбрасывали одинаковые слагаемые в обеих частях уравнения.

В XII в. сочинение аль-Хорезми перевели на латинский язык, сохранив в его названии только слово «аль-джебр», которое вскоре стали произносить как алгебра.

Постепенно сформировалась современная алгебра, которая охватывает не только теорию решения уравнений, а и способы проведения операций (действий) с разнообразными объектами (в частности, с числами).

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Целые выражения
  • Одночлены
  • Многочлены
  • Формулы сокращенного умножения
  • Отношения и пропорции
  • Рациональные числа и действия над ними
  • Делимость натуральных чисел
  • Выражения и уравнения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://spacemath.xyz/obshhie-svedeniya-ob-uravneniyah/

http://www.evkova.org/linejnoe-uravnenie-s-odnoj-peremennoj