Какие модели описываются дифференциальными уравнениями

Модели, заданные в виде уравнений в частных производных

Ряд задач, связанных с использованием физических полей, приводит к моделям в виде дифференциальных уравнений в частных производных.

Особенностью таких задач является то, что изучаемые параметры изменяются не только во времени, но и зависят от координат x, y, z рассматриваемого пространства. Такие модели называются нестационарными. Модели, в которых параметры не зависят от времени, называются стационарными.

К таким моделям сводятся описания полей температур в элементах конструкции двигателя и полей скоростей при течении жидкости (газа). Уравнениями в частных производных описываются колебания элементов конструкции и поля напряжений, возникающих при работе этих элементов.

Линейное дифференциальное уравнение в частных производных имеет вид

.

Математическая модель, описанная дифференциальными уравнениями в частных производных, должна включать в себя необходимые для решения задачи краевые условия:

1. Должна быть задана область D, ограниченная поверхностью (на плоскости – кривой) G , в которой определяется решение.

2. Должны быть заданы условия на границе G этой области.

В случае нестационарного поля эти граничные условия, так же как и сама область могут меняться во времени.

Граничные условия могут быть 1-го, 2-го и 3-го рода:

а) Граничные условия 1-го рода предусматривают задание на границе величины искомой функции:

– для стационарного поля;

– для нестационарного поля.

б) Граничные условия 2-го рода – предусматривают задание производной искомой функции:

– для стационарного поля;

– для нестационарного поля.

в) Граничные условия 3-го рода – предусматривают комбинации функции и ее производной:

– для стационарного поля;

– для нестационарного поля.

3. Для нестационарных полей должны быть заданы одно или два начальных условия, характеризующих состояние поля в начальный момент времени:

(i = 1, 2, 3).

Здесь xi – координаты пространства.

Совокупность уравнений и краевых (и начальных) условий полностью определяет модель и позволяет провести ее исследование.

Решение часто задается в виде семейств изолиний F = const (Рис. 2.11).

В качестве примера рассмотрим хорошо изолированный металлический пруток, нагреваемый с одной стороны. С другой стороны помещен измеритель температуры (Рис. 2.12). Величина подогрева x(t) в момент времени t является входным сигналом, а измеряемая на другом конце температура y(t) – выходным сигналом.

Обозначим через x расстояние от измерителя до точки прутка. Температура в этой точке z будет описываться функцией вида

Уравнение теплопроводности для одномерного случая для определения функции z будет иметь вид:

,

где K – коэффициент теплопроводности.

Начальным условием в данном случае является начальное распределение температуры (при t = 0) по прутку: z(0, x) = j(x).

Граничные условия определяются тремя условиями:

а) Нагрев прутка на правом конце

.

б) На левом конце подвод тепла отсутствует

.

в) Показания на измерителе температур (x = 0) в момент времени t определяется следующим выражением

.

Таким образом, для вычисления температуры на расстоянии L от измерителя по формуле для y(t) необходимо проинтегрировать дифференциальное уравнение с учетом начальных и граничных условий, т.е. получить функцию z(t,x). Затем следует проградуировать измеритель температуры, т.е. определить соответствие между x(t) и y(t), задавая различные значения x(t) и вычисляя .

Контрольные вопросы к лекции 5

1. Где используются математические модели в виде обыкновенных дифференциальных уравнений?

2. Что должна включать в себя математическая модель в виде обыкновенных дифференциальных уравнений?

3. Какими методами осуществляется исследование моделей, заданных в виде обыкновенных дифференциальных уравнений?

4. Запишите математическую модель движения груза массой m, закрепленного на вертикальной стенке с помощью пружины жесткостью С и совершающего колебательное движение вдоль оси х в среде с вязкостью n.

5. Какой принцип используется при построении этой модели?

6. К какому типу относится эта модель?

7. Где используются математические модели в виде дифференциальных уравнений в частных производных?

8. Что является особенностью математических моделей в виде дифференциальных уравнений в частных производных?

9. Что должна включать в себя математическая модель в виде дифференциальных уравнений в частных производных?

10. Какого типа бывают граничные условия?

11. Приведите математическую модель распределения температурного поля в металлическом прутке, нагреваемом с одной стороны.

В.20Модели, описываемые дифференциальными уравнениями в частных

Производных. Сеточные методы решения. Проекционные методы.

Проекционно-сеточные методы (метод конечных элементов).

Стандартные пакеты. Методы математической статистики.

В.21. Оптимизация как заключительный этап вычислительного эксперимента. Модели и постановки задач оптимизации в различных предметных областях. Методы минимизации функций одной переменной. Классификация методов минимизации функций многих переменных. Методы условной оптимизации.

Оптимизация – это выбор наилучшего решения. Математическая теория оптимизации включает в себя фундаментальные результаты и численные методы, позволяющие находить наилучший вариант из множества возможных альтернатив без их полного перебора и сравнения. В достаточно общем виде математическую задачу оптимизации можно сформулировать следующим образом; минимизировать (максимизировать) целевую функцию с учетом ограничений на управляемые переменные. Под минимизацией (максимизацией) функции п переменных f (x)=(x1 . xn) на заданном множестве U n–мерного векторного пространства Еn понимается определение хотя бы одной из точек минимума (максимума) этой функции на множестве U, а также, если это необходимо, и минимального (максимального) на множестве U значения f (x). При записи математических задач оптимизации в общем виде обычно используется следующая символика: f (x) ®min (max), хÎ U где f (x) – целевая функция, а U – допустимое множество, заданное ограничениями на управляемые переменные.Методы минимизации функций одной переменной. Оптимизация функции одной переменной — наиболее простой тип оптимизационных задач. С учетом этого можно предложить следующий алгоритм минимизации f (х) на отрезке [а; b] (классический метод). 1. Решить уравнение на интервале х (а; b), т.е. найти все стационарные точки x1, . xk–1 (а; b). Положить x0 = а, xk = b. 2. Вычислить значения f (х) функции f (х) в точках xi, i = 0, . k. 3. Найти . Положить х* = xm .. Для решения задачи минимизации функции f (х) на отрезке [а; b] на практике, как правило, применяют приближенные методы. Они позволяют найти решение этой задачи с необходимой точностью в результате определения конечного числа значений функции f (х) и ее производных в некоторых точках отрезка [а; b]. Методы, использующие только значения функции и не требующие вычисления ее производных, называются прямыми методами минимизации. (метод перебора, метод исключения отрезков, метод золотого сечения, деления отрезка пополам) Большим достоинством прямых методов является то, что от целевой функции не требуется дифференцируемости и, более того, она может быть не задана в аналитическом виде. Единственное, на чем основаны алгоритмы прямых методов минимизации, это возможность определения значений f (х) в заданных точках. Методы минимизации функций многих переменных Рельеф функции Понятие «рельеф функции» удобно рассмотреть на примере функции двух переменных . Эта функция описывает некоторую поверхность в трехмерном пространстве с координатами x, y, z. Задача означает поиск низшей точки этой поверхности. Метод Гаусса. Изложим этот метод на примере функций трех переменных . Выберем нулевое приближение , Фиксируем значение двух координат . Тогда функция будет зависеть только от одной переменной ; обозначим ее через . Используя какой-либо способ нахождения минимума функции одной переменной, отыщем минимум функции и обозначим его через . Мы сделали шаг из точки в точку по направлению, параллельному оси ; на этом шаге значение функции уменьшилось. Теперь из новой точки сделаем спуск по направлению, параллельному оси , то есть рассмотрим функцию найдем ее минимум и обозначим его через . Второй шаг приводит нас в точку . Из этой точки делаем третий шаг — спуск параллельно оси и находим минимум функции . Приход в точку завершает цикл спусков или первую итерацию. Далее будем повторять циклы. На каждом спуске функция не возрастает, и при этом значение функции ограничено снизу ее значением в минимуме . Следовательно, итерации сходятся к некоторому пределу . Случайный поиск Методы спуска не полноценны на неупорядоченном рельефе. Если экстремумов много, то спуск из одного нулевого приближения может сойтись только к одному из локальных минимумов, не обязательно абсолютному. Тогда для исследования задачи применяют случайный поиск. Предполагают, что искомый минимум лежит в некотором n-мерном параллелепипеде. В этом параллелепипеде выбирают случайным образом N пробных точек. Однако даже при очень большом числе пробных точек вероятность того, что хотя бы одна точка попадает в небольшую окрестность локального минимума, ничтожно мала. Действительно, пусть и диаметр котловины около минимума составляет 10% от пределов изменения каждой координаты. Тогда объем этой котловины составляет часть объема n- мерного параллелепипеда. Уже при числе переменных практически ни одна точка в котловину не попадет.
Поэтому берут небольшое число точек и каждую точку рассматривают как нулевое приближение. Из каждой точки совершают спуск, быстро попадая в ближайший овраг или котловину; когда шаги спуска быстро укорачиваются, его прекращают, не добиваясь высокой точности. Этого уже достаточно, чтобы судить о величине функции в ближайшем локальном минимуме с удовлетворительной точностью. Сравнивая окончательные значения функций на всех спусках между собой, можно изучить расположение локальных минимумов и сопоставить их величины. После этого можно отобрать нужные по смыслу задачи минимумы и провести в них дополнительные спуски для получения координат точек минимума с более высокой точностью.

Методы решения вариационных задач. Сведение вариационной задачи к задаче минимизации функции многих переменных. Системы поддержки принятия решений. Понятие об экспертных системах. Обзор и характеристики имеющихся стандартных пакетов программ

Вариационное исчисление — это раздел функционального анализа, в котором изучаются вариации функционалов. Самая типичная задача вариационного исчисления состоит в том, чтобы найти функцию, на которой заданный функционал достигает экстремального значения. В основе вариационного исчисления лежит понятие функционала, то есть функция , аргумент которой сам является функцией. Одной из основных задач вариационного исчисления является нахождение экстремумов функционалов .

Система поддержки принятия решений или СППР (Decision Support Systems, DSS) — это компьютерная система, которая путем сбора и анализа большого количества информации может влиять на процесс принятия решений организационного плана в бизнесе и предпринимательстве. Классификации СППР:По взаимодействию с пользователем выделяют три вида СППР:пассивные помогают в процессе принятия решений, но не могут выдвинуть конкретного предложения;активные непосредственно участвуют в разработке правильного решения;кооперативные предполагают взаимодействие СППР с пользователем. Экспертная система — это программа, которая заменяет эксперта в той или иной области.ЭС предназначены, главным образом, для решения практических задач, возникающих в слабо структурированной и трудно формализуемой предметной области. ЭС были первыми системами, которые привлекли внимание потенциальных потребителей продукции искусственного интеллекта.С ЭС связаны некоторые распространенные заблуждения. Заблуждение первое: ЭС будут делать не более (а скорее даже менее) того, чем может эксперт, создавший данную систему. Для опровержения данного постулата можно построить самообучающуюся ЭС в области, в которой вообще нет экспертов, либо объединить в одной ЭС знания нескольких экспертов, и получить в результате систему, которая может то, чего ни один из ее создателей не может.Примеры экспертных систем в военном делеACES. Экспертная система выполняет картографические работы по нанесению обстановки на карты. Система получает в качестве исходных данных карту без обстановки и информацию, описывающую расположение объектов на местности. Система выдает карту, содержащую все желаемые условные обозначения и подписи, Пример экспертной системы в компьютерных системахMIXER. Экспертная система оказывает помощь программистам в написании микропрограмм для разработанной Texas Instruments СБИС TI990. Пример экспертной системы в информатикеCODES. Экспертная система помогает разработчику базы данных, желающему использовать подход IDEF1 для определения концептуальной схемы базы данных.

Модели, заданные в виде уравнений в частных производных

Ряд задач, связанных с использованием физических полей, приводит к моделям в виде дифференциальных уравнений в частных производных.

Особенностью таких задач является то, что изучаемые параметры изменяются не только во времени, но и зависят от координат x, y, z рассматриваемого пространства. Такие модели называются нестационарными. Модели, в которых параметры не зависят от времени, называются стационарными.

К таким моделям сводятся описания полей температур в элементах конструкции двигателя и полей скоростей при течении жидкости (газа). Уравнениями в частных производных описываются колебания элементов конструкции и поля напряжений, возникающих при работе этих элементов.

Линейное дифференциальное уравнение в частных производных имеет вид

.

Математическая модель, описанная дифференциальными уравнениями в частных производных, должна включать в себя необходимые для решения задачи краевые условия:

1. Должна быть задана область D, ограниченная поверхностью (на плоскости – кривой) G , в которой определяется решение.

2. Должны быть заданы условия на границе G этой области.

В случае нестационарного поля эти граничные условия, так же как и сама область могут меняться во времени.

Граничные условия могут быть 1-го, 2-го и 3-го рода:

а) Граничные условия 1-го рода предусматривают задание на границе величины искомой функции:

– для стационарного поля;

– для нестационарного поля.

б) Граничные условия 2-го рода – предусматривают задание производной искомой функции:

– для стационарного поля;

– для нестационарного поля.

в) Граничные условия 3-го рода – предусматривают комбинации функции и ее производной:

– для стационарного поля;

– для нестационарного поля.

3. Для нестационарных полей должны быть заданы одно или два начальных условия, характеризующих состояние поля в начальный момент времени:

(i = 1, 2, 3).

Здесь xi – координаты пространства.

Совокупность уравнений и краевых (и начальных) условий полностью определяет модель и позволяет провести ее исследование.

Решение часто задается в виде семейств изолиний F = const (Рис. 2.11).

В качестве примера рассмотрим хорошо изолированный металлический пруток, нагреваемый с одной стороны. С другой стороны помещен измеритель температуры (Рис. 2.12). Величина подогрева x(t) в момент времени t является входным сигналом, а измеряемая на другом конце температура y(t) – выходным сигналом.

Обозначим через x расстояние от измерителя до точки прутка. Температура в этой точке z будет описываться функцией вида

Уравнение теплопроводности для одномерного случая для определения функции z будет иметь вид:

,

где K – коэффициент теплопроводности.

Начальным условием в данном случае является начальное распределение температуры (при t = 0) по прутку: z(0, x) = j(x).

Граничные условия определяются тремя условиями:

а) Нагрев прутка на правом конце

.

б) На левом конце подвод тепла отсутствует

.

в) Показания на измерителе температур (x = 0) в момент времени t определяется следующим выражением

.

Таким образом, для вычисления температуры на расстоянии L от измерителя по формуле для y(t) необходимо проинтегрировать дифференциальное уравнение с учетом начальных и граничных условий, т.е. получить функцию z(t,x). Затем следует проградуировать измеритель температуры, т.е. определить соответствие между x(t) и y(t), задавая различные значения x(t) и вычисляя .

Контрольные вопросы к лекции 5

1. Где используются математические модели в виде обыкновенных дифференциальных уравнений?

2. Что должна включать в себя математическая модель в виде обыкновенных дифференциальных уравнений?

3. Какими методами осуществляется исследование моделей, заданных в виде обыкновенных дифференциальных уравнений?

4. Запишите математическую модель движения груза массой m, закрепленного на вертикальной стенке с помощью пружины жесткостью С и совершающего колебательное движение вдоль оси х в среде с вязкостью n.

5. Какой принцип используется при построении этой модели?

6. К какому типу относится эта модель?

7. Где используются математические модели в виде дифференциальных уравнений в частных производных?

8. Что является особенностью математических моделей в виде дифференциальных уравнений в частных производных?

9. Что должна включать в себя математическая модель в виде дифференциальных уравнений в частных производных?

10. Какого типа бывают граничные условия?

11. Приведите математическую модель распределения температурного поля в металлическом прутке, нагреваемом с одной стороны.

Стохастические модели

Лекция 6

Точные величины и зависимости, используемые в детерминированных моделях, представляют собой лишь некоторые средние значения (математические ожидания) реальных случайных величин (зависимостей). Так, физические константы, характеризующие материалы и рабочие тела (предел прочности материала s, теплопроводность l, плотность r и т.д.) меняются в зависимости от партии материала и условий окружающей среды. Всегда имеется определенный разброс размеров деталей l, расходов топлива в системах подачи. Все это приводит к тому, что и результирующие функции, характеризующие процесс, также носят случайный характер. Результаты, полученные с помощью детерминированной модели, представляют собой математические ожидания этих характеристик. При этом конкретные данные для конкретной системы могут существенно отличаться от этих математических ожиданий. Например, ресурс конкретного двигателя может существенно отличаться от среднего ресурса двигателей данного типа. Для учета таких отличий вводятся всевозможные «запасы прочности», призванные гарантировать работоспособность реальных объектов при неблагоприятном стечении обстоятельств.

Значительно более полные и объективные результаты можно получить при переходе от детерминированных к стохастическим моделям, то есть при переходе от точно заданных величин к соответствующим случайным величинам.

При этом константы (s, l, r, l,…) заменяются случайными величинами xs, xl, xr, xl,… , подчиненными определенным законам распределения.

Однократное исследование стохастической модели приведет к некоторой случайной величине функции отклика xW, представляющей собой, вообще говоря, ограниченную ценность. Для получения значимых результатов необходимо провести многократное исследование модели и получить распределение результирующей характеристики в интересующем исследователя диапазоне. Поверхность отклика в этом случае представляет собой некий размытый слой переменной плотности.

Такой метод исследования стохастической модели получил название метода статистических испытаний или метода Монте-Карло.

Трудоемкость исследования стохастических моделей существенно выше, чем моделей детерминированных:

1. Значительно возрастает объем исходной информации: замена констант случайными величинами, введение законов распределения этих величин усложняют модель.

2. Для получения распределения результирующей функции необходимо многократное исследование модели.

С другой стороны, полученное при статистическом моделировании распределение характеристик системы дает в руки исследователя чрезвычайно ценную информацию: Такое распределение позволяет оценить не только среднее значение изучаемой величины, но и разброс этих значений, вероятности появления тех или иных значений при конкретном испытании (например, вероятность выхода из строя ДЛА через тот или иной промежуток времени) и их зависимость от различных факторов.

Очень часто используют нормальный или гауссовский закон распределения, для которого плотность вероятности f(x) и функция распределения R(х) задаются следующими соотношениями:

Вероятность того, что случайная величина попадет в интервал (х, x+dx):

;

Вероятность того, что случайная величина попадет в интервал (¥, х):

.

Для случайной величины x, распределенной по нормальному закону,
m = М(x), s = s(x) (Рис. 2.13, 2.14). Случайная величина распределена в интервале m ± 3s. По нормальному закону распределены обычно характеристики материалов, размеры деталей, ресурсы элементов ДЛА.

Наряду с нормальным используются и другие законы распределения случайных величин. Например, равномерное распределение – задает равновероятностные на отрезке [a, b] случайные величины. (Рис. 2.15, 2.16). Плотность вероятности и функция распределения при равномерном распределении определяются по формулам:

Выбор закона распределения для конкретной случайной величины, входящей в стохастическую модель, может быть обоснован экспериментально или теоретически.

Конкретные параметры распределения (m, s,…) всегда определяются на основе экспериментальных данных. Оценка параметров нормального распределения на основе выборки <xi> из n случайных значений величины х дается соотношениями:

; .

При использовании метода статистических испытаний характеристики изучаемой системы оцениваются на основе некоторой ограниченной выборки реализаций. Поэтому важно определить достоверность этой оценки.

Вероятность р пребывания системы в некотором состоянии (например, вероятность того, что время работы элемента ДЛА до первого отказа составит не менее t часов), определяется частотой этого события при моделировании:

,

где n+ – число реализаций, при которых наблюдалось изучаемое состояние системы (время работы ДЛА до первого отказа превысило t); n – общее число реализаций.

Эта оценка является приближенной, так как определяется на основе ограниченной выборки. Отношение называется выборочной статистикой.

Ошибка моделирования определяется отклонением выборочной статистики от вероятности

.

Можно показать, что эта ошибка удовлетворяет неравенству

, (2.20)

Здесь р – вероятность рассматриваемого состояния; a – вероятность невыполнения оценки (2.20) (уровень риска). Доверительная вероятность выполнения этой оценки равна 1– a.

Из (2.20) следует, что погрешность стохастического моделирования обратно пропорциональна . То есть увеличение точности при стохастическом моделировании требует значительного увеличения числа реализаций. Для уменьшения погрешности в 10 раз необходимо увеличить число реализаций (а значит и время счета) в 100 раз. Поэтому метод статистических испытаний не может дать решения с очень высокой степенью точности. Считается, что допустимая ошибка может составлять 1-5% максимальной величины, полученной при моделировании.

Величина ошибки зависит также от вероятности р оцениваемого состояния и допустимого уровня риска a. Обычно a задают на одном из фиксированных уровней
(a = 0,005; 0,01; 0,025; 0,05; 0,1 …).

Контрольные вопросы к лекции 6

1. Что представляют собой величины, входящие в стохастическую модель?

2. Что представляет собой поверхность отклика моделей, исследуемых методом статистических испытаний?

3. В чем заключается метод Монте-Карло?

4. Какие трудности возникают при исследовании стохастических моделей?

5. Какую информацию дает в руки исследователя полученное при статистическом исследовании распределение характеристик системы?

6. Какие законы распределения случайной величины Вы знаете?

7. Как выглядит плотность распределения для нормального закона?

8. Как выглядит плотность распределения для закона равной вероятности?

9. Как определяются оценки математического ожидания и дисперсии случайной величины?

10. Что такое выборочная статистика?

11. Почему она называется «выборочная»?

12. От чего зависит погрешность стохастического моделирования?


источники:

http://lektsii.org/15-19701.html

http://megaobuchalka.ru/4/14930.html