Какие уравнения и неравенства называют логарифмическими

Логарифмические уравнения и неравенства

Логарифмическим уравнениям и неравенствам в вариантах ЕГЭ по математике посвящена задача C3. Научиться решать задания C3 из ЕГЭ по математике должен каждый ученик, если он хочет сдать предстоящий экзамен на «хорошо» или «отлично». В данной статье представлен краткий обзор часто встречающихся логарифмических уравнений и неравенств, а также основных методов их решения.

Итак, разберем сегодня несколько примеров логарифмических уравнений и неравенств, которые предлагались учащимся в вариантах ЕГЭ по математике прошлых лет. Но начнет с краткого изложение основных теоретических моментов, которые нам понадобятся для их решения.

Логарифмическая функция

Определение

0,\, a\ne 1 \]» title=»Rendered by QuickLaTeX.com»/>

называют логарифмической функцией.

Основные свойства

Основные свойства логарифмической функции y = loga x:


a > 10 0,\, b>0,\, c>0,\, a\ne 1. \]» title=»Rendered by QuickLaTeX.com»/>

• Логарифм частного двух положительных чисел равен разности логарифмов этих чисел:

0,\, b>0,\, c>0,\, a\ne 1. \]» title=»Rendered by QuickLaTeX.com»/>

• Если a и b — положительные числа, причем a ≠ 1, то для любого числа r справедливо равенство:

0,\, b>0,\, a\ne 1. \]» title=»Rendered by QuickLaTeX.com»/>

• Если a, b, c — положительные числа, причем a и c отличны от единицы, то имеет место равенство (формула перехода к новому основанию логарифма):

0,\, b>0,\, c>0,\, a\ne 1,\, c\ne 1. \]» title=»Rendered by QuickLaTeX.com»/>

Решение логарифмических уравнений и неравенств

Пример 1. Решите уравнение:

Решение. В область допустимых значений входят только те x, при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:

0, \\ 8+5x > 0 \end \Leftrightarrow \begin x^2 > 6, \\ x>-1,6. \end \Leftrightarrow \]» title=»Rendered by QuickLaTeX.com»/>

С учетом того, что

-\sqrt<6>, \]» title=»Rendered by QuickLaTeX.com»/>

получаем промежуток, определяющий область допустимых значений данного логарифмического уравнения:

На основании теоремы 1, все условия которой здесь выполнены, переходим к следующему равносильному квадратичному уравнению:

В область допустимых значений входит только первый корень.

Ответ: x = 7.

Пример 2. Решите уравнение:

Решение. Область допустимых значений уравнения определяется системой неравенств:

0, \\ -x-31>0 \end\Leftrightarrow \begin -1

Очевидно, что эти два условия противоречат друг другу. То есть нет ни одного такого значения x, при котором одновременно выполнялись бы оба неравенства. Область допустимых значений уравнения является пустым множеством, а значит решений у данного логарифмического уравнения нет.

Ответ: корней нет.

Обратите внимание, что в этом задании нам вообще не пришлось искать корни уравнения. Достаточно оказалось определить, что его область допустимых значений не содержит ни одного действительно числа. Это одно из преимуществ такой последовательности решения логарифмических уравнений и неравенств (начинать с определения области допустимых значений уравнения, а затем решать его путем равносильных преобразований).

Примет 3. Решите уравнение:

Решение. Область допустимых значений уравнения определяется здесь легко: x > 0.

Уравнение принимает вид:

Оба ответа входят в область допустимых значений уравнения, поскольку являются положительными числами.

Пример 4. Решите уравнение:

Решение. Вновь начнем решение с определения области допустимых значений уравнения. Она определяется следующей системой неравенств:

0, \\ x+3>0, \\ 1-x>0 \end\Leftrightarrow \begin x>-2, \\ x>-3, \\ x

Воспользовавшись правилом сложения логарифмов, переходим к равносильному в области допустимых значений уравнению:

Основания логарифмов одинаковы, поэтому в области допустимых значений можно перейти к следующему квадратному уравнению:

Первый корень не входит в область допустимых значений уравнения, второй — входит.

Ответ: x = -1.

Пример 5. Решите уравнение:

Решение. Будем искать решения в промежутке x > 0, x≠1. Преобразуем уравнение к равносильному:

Оба ответа входят в область допустимых значений уравнения.

Пример 6. Решите уравнение:

Решение. Система неравенств, определяющая область допустимых значений уравнения, имеет на этот раз вид:

0, \\ x>0, \\ x\ne 1 \end\Leftrightarrow x>0,\, x\ne 1. \]» title=»Rendered by QuickLaTeX.com»/>

Используя свойства логарифма, преобразуем уравнение к равносильному в области допустимых значений уравнению:

Используя формулу перехода к новому основанию логарифма, получаем:

В область допустимых значений входит только один ответ: x = 4.

Перейдем теперь к логарифмическим неравенствам. Это как раз то, с чем вам придется иметь дело на ЕГЭ по математике. Для решения дальнейших примеров нам потребуется следующая теорема:

Теорема 2. Если f(x) > 0 и g(x) > 0, то:
при a > 1 логарифмическое неравенство log a f(x) > log a g(x) равносильно неравенству того же смысла: f(x) > g(x);
при 0 log a g(x) равносильно неравенству противоположного смысла: f(x)

Решение. Начнем с определения области допустимых значений неравенства. Выражение, стоящее под знаком логарифмической функции, должно принимать только положительные значения. Это значит, что искомая область допустимых значений определяется следующей системой неравенств:

0, \\ x+4>0 \end\Leftrightarrow \begin x\in(-\mathcal<1>;-3)\cup(2;+\mathcal<1>), \\ x>-4 \end \]» title=»Rendered by QuickLaTeX.com»/>

Так как в основании логарифма стоит число, меньшее единицы, соответствующая логарифмическая функция будет убывающей, а потому равносильным по теореме 2 будет переход к следующему квадратичному неравенству:

Окончательно, с учетом области допустимых значений получаем ответ:

Пример 8. Решите неравенство:

Решение. Вновь начнем с определения области допустимых значений:

0, \\ \frac<(x-9)^<11>>>0 \end\Leftrightarrow x\in(-\mathcal<1>;3)\cup(9;+\mathcal<1>). \]» title=»Rendered by QuickLaTeX.com»/>

На множестве допустимых значений неравенства проводим равносильные преобразования:

После сокращения и перехода к равносильному по теореме 2 неравенству получаем:

С учетом области допустимых значений получаем окончательный ответ:

Пример 9. Решите логарифмическое неравенство:

Решение. Область допустимых значений неравенства определяется следующей системой:

0, \\ x+1\ne 1,\\ x(x+1)(x+2)>0 \end\Leftrightarrow x\in (0;+\mathcal<1>). \]» title=»Rendered by QuickLaTeX.com»/>

Видно, что в области допустимых значений выражение, стоящее в основании логарифма, всегда больше единицы, а потому равносильным по теореме 2 будет переход к следующему неравенству:

С учетом области допустимых значений получаем окончательный ответ:

Пример 10. Решите неравенство:

Решение.

Область допустимых значений неравенства определяется системой неравенств:

0, \\ x^2>0, \\ x^2\ne 1 \end\Leftrightarrow x\in(-\mathcal<1>;-1)\cup(-1;0)\cup(4;+\mathcal<1>). \]» title=»Rendered by QuickLaTeX.com»/>

I способ. Воспользуемся формулой перехода к новому основанию логарифма и перейдем к равносильному в области допустимых значений неравенству:

Неравенство будет равносильно двум системам. Первой:

Итак, окончательный ответ:

II способ. Решаем методом интервалов. Преобразуем неравенство к виду:

Вычтем из знаменателя Это ничего не изменит, поскольку

С учетом того, что выражения и — одного знака при 0,» title=»Rendered by QuickLaTeX.com» height=»18″ width=»74″ style=»vertical-align: -4px;»/> в области допустимых значений имеет место следующий равносильный переход:

Множество решений данного неравенства

Итак, а с учетом области допустимых значений получаем тот же результат:

Итак, что нужно для того, чтобы решать логарифмические уравнения и неравенства?

  • Во-первых, внимание. Не допускайте ошибок в проводимых преобразованиях. Следите за тем, чтобы каждое ваше действие не расширяло и не сужало область допустимых значений неравенства, то есть не приводило ни к потере, ни к приобретению посторонних решений.
  • Во-вторых, умение мыслить логически. Составители ЕГЭ по математике заданиями C3 проверяют умение учащихся оперировать такими понятиями, как система неравенств (пересечение множеств), совокупность неравенств (объедение множеств), осуществлять отбор решений неравенства, руководствуясь его областью допустимых значений.
  • В-третьих, четкое знание свойств всех элементарных функций (степенных, рациональных, показательных, логарифмических, тригонометрических), изучаемых в школьном курсе математики и понимание их смысла.

Главное же требование — это настойчивость в достижении своей цели. Учитесь, тренируйтесь, если нужно — ежедневно, изучайте и запоминайте на примерах основные способы решения неравенств и их систем, анализируйте возникающие ошибки и не допускайте их в будущем. За помощью в этом нелегком деле вы можете обратиться к своему школьному учителю по математике, репетитору, родителям, друзьям и знакомым, книгам, а также огромному количеству материалов, доступных на просторах Интернета. Желаю вам успехов в подготовке к Единому государственному экзамену по математике.

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Решение логарифмических неравенств.

Логарифмические неравенства в задании 14 профильного уровня ЕГЭ по математике встречаются чаще других. Это связано, в первую очередь, с тем, что выражения с логарифмом имеют ограниченную область допустимых значений, причём задаваемую также неравенством. Последнее обстоятельство приводит к тому, что решение логарифмического неравенства во многих случаях сводится к решению систем алгебраических неравенств (рациональных и не только).

В этом разделе рассмотрены типовые логарифмические неравенства – простейшие и соответствующие профильному уровню ЕГЭ. Все неравенства даны с решениями и комментариями, поэтому будут полезны и при текущем изучении или повторении этой темы.

Если возникают вопросы — обращайтесь через форму для письма, рисунок конверта кликабелен.

Узнайте, как можно поддержать сайт и помочь его развитию.

  • Введение вспомогательной переменной
  • О разложении на множители

    Основные положения и примеры решения простейших логарифмических неравенств.

    С этим разделом могут ознакомиться и выпускники, которые планируют сдавать экзамен по математике на базовом уровне.
    На профильном экзамене встречаются более сложные неравенства, но их также тем или иным образом требуется сводить к простейшим.

    К простейшим относятся логарифмические неравенства, которые содержат неизвестную переменную в составе аргумента логарифмической функции с фиксированным основанием, т.е. это неравенства вида \(log_a > \log_a\), где \(a>0,\;a\ne1\) и неравенства, сводящиеся к этому виду.
    В более общих случаях неизвестная величина может встречаться и в основании логарифма.

    Чтобы решать как логарифмические неравенства, так и логарифмические уравнения, нужно вспомнить определение и свойства логарифмической функции как таковой.
    1) Логарифм – трансцендентная функция, т.е. аналитическая функция, которая не может быть задана с помощью алгебраического уравнения. Поэтому чтобы получить решение простейшего логарифмического неравенства, нужно сначала перейти к алгебраическим соотношениям, т.е. «убрать» логарифм.
    2) Логарифм – однозначная и монотонная функция, что означает каждому значению аргумента из области определения соответствует единственное значение функции. Поэтому её можно сравнивать саму с собой и «вычёркивать» логарифм. Как и в каких случаях это делать, рассмотрим на примерых ниже.
    3) Главное – логарифмическая функция имеет ограниченную область определения. Это означает, что при решении любых заданий с логарифмами, содержащими переменные, нужно не забывать про ОДЗ (область допустимых значений) этой переменной.

    Область значений функции E = R – всё множество действительных чисел. Т.е. сам логарифм, в отличие от его аргумента и основания, может принимать любые значения из промежутка \((-\infty; +\infty)\).

    Как уже упоминалось, логарифмическая функция монотонна. Посмотрите на её графики.

    При a > 1 функция возрастающая,

    Поэтому для решения простейших логарифмических неравенств достаточно преобразовать обе части неравенства к логарифму с одинаковым основанием и затем сравнить подлогарифмические выражения. Таким образом мы сравниваем функцию с самой собой при разных значениях её аргумента, т.е. как бы «вычёркиваем» log с обеих сторон неравенства. При этом,
    — если основание степени больше единицы, то знак неравенства без «log» будет таким же, как знак исходного неравенства, что характерно для возрастающих функций – большему значению аргумента соответствует большее значение функции;
    — если основание степени меньше единицы, то знак неравенства будет обратным по отношению к знаку исходного неравенства, что характерно для убывающих функций – большему значению аргумента соответствует меньшее значение функции.

    Пример 1.

    Решение.

    Область допустимых значений (ОДЗ) выражения \(2x+7>0.\)

    Воспользуемся определением логарифма, чтобы представить число −2 в виде значения логарифмической функции с основаением 0,2.

    \[0,2^ <-2>= \left(\frac<1><5>\right)^ <-2>= \left(\frac<5><1>\right)^ <2>= 25,\]
    следовательно \(-2 = \log_<0,2><25>,\) и заданное неравенство можно преобразовать к виду \[\log_<0,2><(2x+7)>\log_<0,2><25>.>\] Теперь можно «отбросить логарифм», изменив знак неравенства на противоположный, так как его основание 0,2 0,> \\ <2x+7 -3,5,>\\ 0\). Это ОДЗ.
    Преобразуем неравенство:
    \(\text\;-\) это сокращенное обозначение для десятичного логарифма \(\log_<10>\). Так как \(10^2 = 100,\) то \(2 = \text<100>\). Далее используем свойства логарифмов \[ \text <(x+2)>1, то логарифм «отбросили» с сохранением знака неравенства.
    Таким образом, заданное неравенство равносильно системе неравенств \[\begin x+2>0,\\[1ex] 2x-6>0,\\[1ex] (x+2)(2x-6) -2,\\ 2x>6,\\ 2x^2+4x-6x-12 — 2,>\\ 3,>\\

    Ответ: \(x \in (3; 8). \)

    Введение вспомогательной переменной

    Пример 4.

    Решение.

    Аргументом обоих логарифмов является один и тот же квадратный трёхчлен \(4+3x-x^2\), однако основания логарифмов различны – это 2 и 0,5, поэтому нужно воспользоваться свойствами логарифмической функции и привести логарифмы к одному основанию. Поскольку \(0,5 = \dfrac<1> <2>= 2^<-1>\), то приводить будем второй логарифм к основанию 2. Для этого используем формулу \(\log_b=\frac<1>\log_a\): \[\log_<0,5> <(4+3x-x^2)>= \log_<2^<-1>><(4+3x-x^2)>=\frac<1><-1>\log_2 <(4+3x-x^2)>= -\log_2<(4+3x-x^2)>\] Теперь неравенство имеет следующий вид \[\log_2^2 <(4+3x-x^2)>— 7\log_2 <(4+3x-x^2)>+10 > 0.\]

    В последнем неравенстве неизвестная величина встречается в обоих слагаемых в совершенно одинаковой форме, поэтому можно продолжить решение методом введения вспомогательной переменной.

    Пусть \(y = \log_2<(4+3x-x^2)>\), тогда логарифмическое неравенство преобразуется в обычное квадратное неравенство \[y^2 — 7y +10 > 0,\] которое решается графически (через параболу) или методом интервалов. Сделайте это самостоятельно. Ответ получится такой \(y \in (-\infty;2)\cup(5;+\infty)\) или, что то же самое \[\left[<\begin \end>\right. \] Последняя запись удобнее для возврата от вспомогательной переменной к логарифму \[\left[<\begin \log_2 <(4+3x-x^2)>5. \end>\right.\] Имеем два простейших неравенства для логарифмов с основанием \(2 > 1\), решаем их \[\log_2 <(4+3x-x^2)>5 \\ \log_2 <(4+3x-x^2)>> \log_2 <32>\\ 4+3x-x^2 > 32. \] Получившиеся два квадратных неравенства вместе с ОДЗ (не забывать о ней!) образуют совокупность двух систем неравенств, решая которые получим окончательный ответ. \[<\left[<\begin <\begin4+3x-x^2 > 0,\\ 4+3x-x^2 0 ; \end>\right. \\ <\begin4+3x-x^2 > 0,\\ 4+3x-x^2 > 32. \end > \left|<\begin x^2 -3x-4 3; \end>\right.> \end > \\ <\;\;x \in \varnothing .>\end>\right.>\] Объединяя множества решений совокупностей неравенств (обозначены квадратной скобкой «[«) и пересекая множества решений систем неравенств (обозначены фигурной скобкой скобкой «<"), делаем окончательный вывод \(x \in (-1;0) \cup (3;4).\)

    Замечание 1. Чтобы не выписывать совокупности систем и системы совокупностей, особенно, если вы путаетесь в этих скобках, можно все этапы решения реализовать схемами на числовой оси.

    Замечание 2. Заметим, что с некоторого момента решение задачи сводится к анализу неравенств, в которых один и тот же квадратный трёхчлен \(4+3x-x^2\) сравнивается с числовыми значениями. Поэтому дальнейшие действия можно свести к построению одной параболы – эскиза графика функции \(y = 4+3x-x^2\) – и посмотреть как она соотносится с горизонтальными линиями \(y = 0, \; y = 4\; и\; y =32.\) (Вспомните аналогичное задание 2-й части ОГЭ за 9-ый класс.) На это не уйдёт много времени, т.к. коэффициенты трёхчлена целые числа, корни легко вычисляются по теореме Виета, а параболу достаточно построить только по характерным точкам.
    Как быстро построить параболу можно посмотреть в видеоуроке на youtube-канале Mathematichka.

    Ответ: \(x \in (-1;0) \cup (3;4).\)

    Решение.

    Выпишем ОДЗ неравенства.
    Условие положительности всех аргументов логарифмической функции \[\begin 64x > 0;\\ x > 0;\\ x^4 > 0 \end\] сводится к одному требованию \(x > 0\).
    Условие неравенства нулю знаменателей всех дробей \[\begin \log_4−3 \ne 0;\\ \log_4 <(64x)>\ne 0;\\ \log^2_4−9 \ne 0\\ \end\] пока запишем формально, анализировать будем в процессе решения.

    В этом примере в отличие от предыдущего, напротив, основания всех логарифмов одинаковы – логарифм по основанию 4, но отличаются аргументы. Используем свойства логарифмов, чтобы упростить выражения. \[\log_4 <(64x)>= \log_4<64>+\log_4=3+\log_4;\\ \log_4 = 4\log_4.\] Тогда неравенство приобретает вид \[\frac<3+\log_4><\log_4−3>+\frac<\log_4−3><3+\log_4>\geqslant\frac<4\log_4+16><\log^2_4−9>,\] где логарифм встречается только в виде \(\log_4\). Введём вспомогательную переменную \(y = \log_4\). \[\frac<3+y>+\frac<3+y>\geqslant\frac<4y+16>\] Получили дробно-рациональное неравенство. Дальнейшие преобразования производим с целью упростить и разложить на множители, чтобы решить методом интервалов. \[\frac<(3+y)^2 + (y-3)^2 > — \frac<4y+16>\geqslant 0,\\ \frac<9+2y+y^2 + y^2-2y+9 - 4y -16 >\geqslant 0,\\ \frac<2y^2- 4y+2 >\geqslant 0,\\ \frac<2(y-1)^2 ><(y+3)(y-3)>\geqslant 0.\] Решение на рисунке.

    Учитывая, что до сих пор все преобразования, которые производились, были равносильными, можем утверждать, что выколов точки 3 и −3 из возможных значений переменной \(y\), мы обеспечили неравенство нулю общего знаменателя дроби, а значит и всех дробей, участвовавших в равносильных преобразованиях. Тем самым выполнена вторая часть ограничений ОДЗ неравенства.

    Итак, неравенство для переменной \(y = \log_4\) выполняется при \[<\left[<\begin y 3; \end>\right.> \; <\left|<\begin \log_4 3; \end>\right.> \; <\left|<\begin \log_4 \log_4<64>; \end>\right.> \; <\left|<\begin x 64. \end>\right.>\] С учётом первого условия ОДЗ \((x>0)\), получаем окончательный ответ

    Ответ: \(x \in \left(0; \;\dfrac<1><64>\right) \cup \ <4\>\cup (64;\;+\infty)\).

    О разложении на множители

    \( \log_3\cdot\log_4 — \log_3 — \log_4 +1 0.\)\[ \log_3\cdot\log_4 — \log_3 — \log_4 +1 0; \end > \\ <\begin\log_4 — 1 > 0,\\ \log_3 — 1 1; \end > \; \left|\; <\begin < \log_4\log_3<3>; > \end> \right. \\ <\begin\log_4> 1,\\ \log_3 \log_4<4>,\\ \log_3 3; \end > \; |\; \\ <\beginx > 4,\\ x 0\), можем записать ответ.

    Решение II – вспомогательная переменная.

    ОДЗ: \(x>0.\)
    Приведём логарифмы к одному основанию, например, к основанию 3. \[\log_4 = \frac<\log_3><\log_3<4>>.\] \[\log_3\cdot\log_4 — \log_3 — \log_4 +1 1.\) Имеем \[ 1 0\), следовательно это окончательный ответ.

    Решение III – через уравнение.

    ОДЗ: \(x>0.\)
    Заменим знак » 0,\] так как \(\sqrt <3>1,\) то \(\log_4<\sqrt<3>> 1,\) то \(\log_4 <3,5>3^1\; и\; 3>1,\) то \(\log_3 <3,5>> 1.\)
    3) пусть \(x = 9; \;x \in (4;+\infty)\) \[\log_3\cdot\log_4 — \log_3 — \log_4 +1 = \\ = \log_3<9>\cdot\log_4 <9>— \log_3 <9>— \log_4 <9>+1 = \\ = 2\log_4 <9>— 2 — \log_4 <9>+ 1 = \\ = \log_4 <9>— 1 >0, \] так как \(9 > 4^1\; и\; 4>1,\) то \(\log_4 <9>> 1.\)

    По рисунку формулируем ответ.

    Сравните все три способа решения для этого вовсе не сложного неравенства и определитесь, какой вариант наиболее приемлем для вас.

    Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

    Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

    Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

    Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.


    источники:

    http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie

    http://mathematichka.ru/ege/C_problems/problem15_4a_log.html