Какими таблицами надо пользоваться при решении тригонометрических уравнений

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a>=cos \varphi`, ` \frac b> =sin \varphi`, `\frac c>=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac <1+cos x>=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Тригонометрические уравнения – формулы в таблице, основные примеры

Тригонометрические уравнения – это весьма трудный раздел. После изучения в школьной программе, он встречается только в высшей физике и математике, в редких разделах программирования. Это делает тему несколько отдаленной и запутанной, но не менее интересной.

Что нужно знать?

Эта тема, как и любая другая, нуждается в наборе базовых знаний, которые требуются для успешного понимания вопроса. Сразу перечислим необходимые навыки, чтобы потом к этому не возвращаться:

  • Умение пользоваться таблицами Брадиса.
  • Знание формул-приведений. Это очень часто требуется, чтобы превратить синус в косинус или наоборот.
  • Знание тригонометрических формул. Это крайне важно для решения сложных уравнений.
  • Знание определений тригонометрических функций.

Определения пригодятся при изучении единичной окружности.

Тригонометрические уравнения

Тригонометрическим называется уравнение, в котором неизвестное стоит в аргументе тригонометрической функции. В этом случае, ответом будет являться угол, выраженный в радианах. Причем значение этого угла будет повторяться с определенной периодичностью (чаще всего 2pi)

Примеры

Существует два способа решения тригонометрических уравнений. Первый – это алгебраический, когда для упрощения уравнения, тригонометрическую функцию целиком заменяют на неизвестное.

Само собой разумеется, что замена не должна совпадать с изначальной переменной.

Второй способ подразумевает под собой тригонометрические преобразования. В ходе решения пользуются формулами тригонометрии для получения результата.

Алгебраический метод

В формуле тригонометрического уравнения сразу видны признаки алгебраического метода: использованы одинаковые функции, при одинаковых аргументах. Различны только численные коэффициенты.

В такой ситуации нужно заменить тригонометрическую функцию на неизвестное и решить уравнение. В нашем случае тригонометрическая функция имеет вид: $sin(x)$

Решим квадратное уравнение. Найдем значение дискриминанта:

$$y2=<<-b-sqrt>over<2a>>=<<-3-sqrt<25>>over<2*2>>=-2$$ –этот корень будет являться корнем полученного квадратного уравнения, но при этом не подходит для тригонометрического уравнения. Потому что значения синуса и косинуса должны находится в пределах от -1 до 1

Тригонометрический метод

Решим уравнение: $$2sin(x^2)+3cos(x^2)−2=0$$

Для решения уравнений придется воспользоваться некоторыми преобразованиями:

Обратим внимание, что и косинус и синус имеют один и тот же аргумент. Воспользуемся этим и выделим одинаковое количество синусов и косинусов, после этого вынесем это самое количество за скобку, а квадраты синусов и косинусов сложим по основному тригонометрическому свойству.

Что мы узнали?

Мы узнали, что такое тригонометрические уравнения. Научились их решать и привели примеры решения для каждого из двух основных методов. Выделили основные навыки и знания, необходимые для правильного решения уравнений такого рода.

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта «Образование».

Тригонометрические уравнения

Средняя оценка: 4.6

Всего получено оценок: 425.

Средняя оценка: 4.6

Всего получено оценок: 425.

Тригонометрические уравнения – это весьма трудный раздел. После изучения в школьной программе, он встречается только в высшей физике и математике, в редких разделах программирования. Это делает тему несколько отдаленной и запутанной, но не менее интересной.

Что нужно знать?

Эта тема, как и любая другая, нуждается в наборе базовых знаний, которые требуются для успешного понимания вопроса. Сразу перечислим необходимые навыки, чтобы потом к этому не возвращаться:

  • Умение пользоваться таблицами Брадиса.
  • Знание формул-приведений. Это очень часто требуется, чтобы превратить синус в косинус или наоборот.
  • Знание тригонометрических формул. Это крайне важно для решения сложных уравнений.
  • Знание определений тригонометрических функций.

Определения пригодятся при изучении единичной окружности.

Тригонометрические уравнения

Тригонометрическим называется уравнение, в котором неизвестное стоит в аргументе тригонометрической функции. В этом случае, ответом будет являться угол, выраженный в радианах. Причем значение этого угла будет повторяться с определенной периодичностью (чаще всего 2\pi)

Примеры

Существует два способа решения тригонометрических уравнений. Первый – это алгебраический, когда для упрощения уравнения, тригонометрическую функцию целиком заменяют на неизвестное.

Само собой разумеется, что замена не должна совпадать с изначальной переменной.

Второй способ подразумевает под собой тригонометрические преобразования. В ходе решения пользуются формулами тригонометрии для получения результата.

Алгебраический метод

В формуле тригонометрического уравнения сразу видны признаки алгебраического метода: использованы одинаковые функции, при одинаковых аргументах. Различны только численные коэффициенты.

В такой ситуации нужно заменить тригонометрическую функцию на неизвестное и решить уравнение. В нашем случае тригонометрическая функция имеет вид: $sin(x)$

Решим квадратное уравнение. Найдем значение дискриминанта:

$$y2=<<-b-\sqrt>\over<2a>>=<<-3-\sqrt<25>>\over<2*2>>=-2$$ –этот корень будет являться корнем полученного квадратного уравнения, но при этом не подходит для тригонометрического уравнения. Потому что значения синуса и косинуса должны находится в пределах от -1 до 1

Тригонометрический метод

Решим уравнение: $$2sin(x^2)+3cos(x^2)−2=0$$

Для решения уравнений придется воспользоваться некоторыми преобразованиями:

Обратим внимание, что и косинус и синус имеют один и тот же аргумент. Воспользуемся этим и выделим одинаковое количество синусов и косинусов, после этого вынесем это самое количество за скобку, а квадраты синусов и косинусов сложим по основному тригонометрическому свойству.

Что мы узнали?

Мы узнали, что такое тригонометрические уравнения. Научились их решать и привели примеры решения для каждого из двух основных методов. Выделили основные навыки и знания, необходимые для правильного решения уравнений такого рода.


источники:

http://kupuk.net/uroki/algebra/trigonometricheskie-yravneniia-formyly-v-tablice-osnovnye-primery/

http://obrazovaka.ru/algebra/trigonometricheskie-uravneniya-formuly.html