Какими уравнениями динамики описывается движение маятника максвелла

Какими уравнениями динамики описывается движение маятника максвелла

Название работы: Маятник Максвелла

Категория: Лабораторная работа

Предметная область: Физика

Описание: Цель работы. На примере маятника Максвелла познакомиться с вычислением и экспериментальным измерением момента инерции цилиндрического твердого тела относительно оси симметрии. Оборудование. Маятник Максвелла. Темы для изучения. В лаборат.

Дата добавления: 2012-10-29

Размер файла: 537 KB

Работу скачали: 190 чел.

На примере маятника Максвелла познакомиться с вычислением и экспериментальным измерением момента инерции цилиндрического твердого тела относительно оси симметрии.

Темы для изучения.

В лабораторной работе на примере маятника Максвелла рассмотрены законы поступательного и вращательного движения, получена рабочая формула для расчета момента инерции маятника Максвелла, приведено описание экспериментальной установки я порядка измерения на ней момента инерции маятника.

Лабораторная работа предназначена для студентов, выполняющих общий физический практикум в лаборатории механики.

Маятник Максвелла представляет собой массивный диск, ось которого подвешена на двух накрученных на нее нитях (рис. 1).

Если маятник отпустить, то он будет совершать возвратно-поступательное движение в вертикальной плоскости при одновременном вращении диска» вокруг оси.

Силы, действующие на маятник, указаны на рис. 2.

Для описания движения маятника Максвелла удобно выбрать систему отсчета, связанную с центром масс маятника и имеющую одну ось, направленную вниз.

Центром масс системы называют воображаемую точку, радиус-вектор которой определяется выражением

(1) ( I )

где т — масса системы, — массы материальных точек, составляющих эту систему, — их радиусы векторы. Величина скорость движения этой воображаемой точки. Импульс системы с учетом ( I ) записывается в виде

,

то есть представляет собой произведение массы системы на скорость ее центра масс, что совершенно аналогично импульсу материальной точки. Таким образом, за движением центра масс можно следить, как за движением материальной точки. Исходя из этого, движение центра масс маятника Максвелла можно описать уравнением:

(2)

где m — масса маятника, — линейное ускорение центра масс, — результирующая сила натяжения обеих нитей.

Вращательное движение маятника описывается основным уравнением динамики вращательного движения, имеющий вид:

(3)

где ℐ — момент инерции, — результирующий момент сил, действующих на маятник относительно некоторой точки, лежащей да оси вращения, — угловое ускорение. Под вектором угла понимают вектор, по модули равный углу поворота и направленный вдоль оси вращения так, чтобы с его начала поворот наблюдался происходящим по часовой стрелке.

Моментом инерции тела относительно некоторой оси вращения называют величину

, (4) (4)

где — массы материальных точек, составляющих это тело, — расстояние от этих точек до оси вращения. Следовательно, момент инерции характеризует распределение массы тела относительно оси вращения. Из (4) видно, что момент инерции — величина аддитивная, то есть момент инерции тела равен сумме моментов инерции его частей. Если вещество в ней распределено непрерывно, то вычисление момента инерции сводится к вычислению интеграла

; (5) (5)

где r — расстояние от элементарной массы dm .

до оси вращения. Интегрирование должно производиться по всей массе тела. Маятник Максвелла можно представить в виде совокупности полых цилиндров и сплошного цилиндра — оси маятника. Рассчитаем, моменты инерции таких тел. Любое из этих тел можно мысленно разбить на тонкие цилиндрические слои, частицы которых находятся на одинаковом расстоянии от оси. Разобьем цилиндр радиуса R на концентрические слои толщиной dr . Пусть радиус какого — то слоя r , тогда масса частиц, заключенных в этом слое, равна

,

где dV — объем слоя, h — высота цилиндра, — плотность вещества цилиндра. Все частицы слоя находятся на расстоянии r от оси, следовательно, момент инерции этого слоя

Момент инерции всего цилиндра найдется интегрированием по всем слоям:

(6)

Так как масса цилиндра , то момент инерции сплошного цилиндра будет равен

(7)

Момент инерции полого цилиндра, имеющего внутренний радиус , а внешний можно вычислить также по формуле (6), изменив в интеграле пределы интегрирования

Замечая, что масса полого цилиндра

, запишем момент инерции полого цилиндра следующим образом:

(8) — ( 8)

Однако, аналитическое вычисление интегралов (5) возможно только в простейших случаях тел правильной геометрической формы. Для тел неправильной формы такие интегралы находят численно, либо используют косвенные методы определения момента инерции.

Для нахождения момента инерции маятника Максвелла относительно его оси вращения можно воспользоваться уравнениями движения,

Для решения дифференциальных уравнений (2) и (3) перейдем от векторной формы к скалярной. Спроектируем уравнение (2) на ось» совпадающую с направлением движения центра масс маятника. Тогда оно примет вид:

(9)

Рассмотрим проекции векторов и на ось координат, совпадающую с осью вращения и направленную по .

Составляющая момента силы относительно точки вдоль оси, проходящей через эту точку, называется моментом силы относительно

Вектор можно записать следующим образом;

,

где — единичный вектор, направленный вдоль , а 5. Тогда угловое ускорение

так как направление вектора ^ при опускании маятника со временем не меняется.

Таким образом, уравнение (З) спроектируется, на ось вращения следующим образом:

(10) (10)

где — радиус оси диска, на которую намотана нить, — угловое ускорение диска. Так как центр масс опускается на столь ко, на сколько раскручивается нить, то его перемещение x связано с углом, поворота соотношением

Дифференцируя это соотношение дважды, получим

(11)

Совместное решение уравнений (9) — (11) дает следующие выражения для линейного ускорения центра масс системы и результирующей силы натяжения:

, (12)

(13)

Из (12), (13) видно, что ускорение диска и сила натяжения нити постоянны и ускорение всегда направлено вниз. Следовательно, если при опускании маятника координату его центра масс отсчитывать от точки его закрепления, то со временем координата будет меняться по закону

(14)

Подставляя (14) в (12), подучим для момента инерции маятника Максвелла следующее выражение

, где (15)

В него входят величины, которые легко экспериментально измерить: — внешний диаметр оси маятника вместе с намотанной на него нитью подвески, t — время опускания маятника, x — расстояние, пройденное центром масс маятника, m . — масса маятника, которая складывается из массы оси маятника, массы диска и массы кольца, надетого на диск. Внешний диаметр оси маятника вместе с намотанной на него нитью подвески

определяется по формуле

(16)

где D — диаметр оси маятника, — диаметр нити.

Механическая конструкция прибора.

Общий вид маятника Максвелла показан на рис. 3. Основание I оснащено регулируемыми ножками 2, которые позволяют произвести выравнивание прибора. В основании закреплена колонка 3, к которой прикреплен неподвижный верхний кронштейн 4 и подвижный нижний кронштейн 5. На верхнем кронштейне находится электромагнит 6, фотоэлектрический датчик 7 и вороток 8 для закрепления и регулирования длины нити подвески маятника. Нижний кронштейн вместе с прикрепленным к нему фотоэлектрическим датчиком 9 можно перемещать вдоль колонки и фиксировать в избранном положении.

Маятник 10 — это диск, закрепленный на оси, на который надеваются кольца 11, изменяя таким образом момент инерции системы.

Маятник с надетым кольцом удерживается в верхнем положении электромагнитом. Длина нити маятника определяется по миллиметровой шкале на колонке прибора. Фотоэлектрические датчики соединены с миллисекундомером. Вид передней панели секундомера 12 представлен на рис. 4.

На лицевой панели миллисекундомера находятся следующие ручки управления

«СЕТЬ» — выключатель сети. Нажатие этой клавиши включает напряжение питания. При этом на цифровых индикаторах высвечиваются нули, и включаются лампочки фотоэлектрических датчиков.

«СБРОС» — установка нуля секундомера. Нажатие этой клавиши вызывает сброс электронных схем миллисекундомера, на цифровых индикаторах высвечиваются нули.

«ПОТ» — управление электромагнитом. При нажатии этой клавиши выключается электромагнит, в схеме миллисекундомера генерируется импульс разрешения на измерение времени.

Нижний кронштейн прибора передвинуть и зафиксировать в крайнем нижнем положений.

На диск маятника надеть одно из колец, прижимая его до упора.

Освободить гайку воротка для регулирования длины нити подвески. Подобрать длину нити таким образом, чтобы край стального кольца после опускания маятника находился на два миллиметра ниже оптической оси нижнего фотоэлектрического датчика. Одновременно произвести корректировку установки маятника, обращая внимание на то, чтобы ось его была параллельной основанию прибора. Зажать вороток.

Нажать клавишу «СЕТЬ».

Намотать на ось маятника нить подвески, обращая внимание на то, чтобы она намоталась равномерно, виток к витку.

Фиксировать маятник при помощи электромагнита, обращая внимание на т.о., чтобы нить в этом положении не была слишком скручена.

Повернуть маятник в направлении его будущего вращения на угол около 5°.

Нажать клавишу «СБРОС».

Нажать клавишу «ПУСК».*

Прочитать измеренное значение времени падения маятника.

Повторить измерения десять раз для определения среднего времени падения маятника.

По шкале на вертикальной колонке прибора определить длину нити маятника.

Измерив диаметры нити и оси маятника D в различных сечениях, найдите средние значения этих величин и по ним определите по формуле (16) диаметр оси вместе с намотанной на ней нитью. Для измерения D и можно использовать микрометр.

Определите массу маятника вместе с надетым кольцом. Значения масс отдельных элементов нанесены на них.

По формуле (15) определите момент инерции маятника Максвелла. Вычислите» момент инерции маятника теоретически, используя формулы (7), (8), и сравните полученный результат с величиной, рассчитанной по формуле (15).

Повторите измерения для двух оставшихся колец.

Доверительный интервал △ ℐ можно рассчитать по формуле

где △ D , , △ t , △ x — доверительные интервалы для прямых измерений величин D , , t и x , учитывающие как случайные, так и систематические погрешности. Способы расчета этих величин приведены в пособии Л.П.Китаевой «Рекомендации по оценке погрешностей измерений в физическом практикуме».

При работе с прибором необходимо соблюдать правила безопасности, относящиеся к устройствам, в которых используется напряжение до 250 вольт. Эксплуатация прибора допускается только при наличии заземления.

  1. Сформулируйте теорему о движении центра масс системы материальных точек.
  2. Дайте определение момента инерции одной материальной точки, системы материальных точек.
  3. Запишите уравнения движения маятника Максвелла.
  1. Как меняются ускорение, скорость и сила натяжения нитей при движении маятника?

Как меняется механическая энергия маятника Максвелла при его движении?

Лабораторная работа № 1-3. Маятник Максвелла

Лабораторная работа № 1-3

Цель работы: познакомиться с основными понятиями кинематики и динамики поступательного и вращательного

движения. Экспериментально определить угловое ускорение и момент инерции маятника.

Приборы и принадлежности: маятник Максвелла, набор металлических накладных колец, втулки.

Описание экспериментальной установки.

Данная установка называется маятником Максвелла. Она служит для определения момента инерции тела. Небольшой диск (маховичок), туго надетый на ось опускается под действием силы тяжести на двух нитях, предварительно намотанных на ось маховичка. Нити во время движения разматываются до полной длины. Раскрутившийся маховичок по инерции продолжает вращательное движение в том же направлении и наматывает нити на ось, вследствие чего он поднимается вверх, замедляя при этом вращение. Дойдя до верхней точки, диск опять опускается вниз и т. д. Маховичок будет совершать колебания вверх — вниз, поэтому данное устройство и называют маятником.

Общий вид маятника Максвелла приведён на рис. 1.

На основании 1 закреплена стойка 2, к которой прикреплены неподвижный верхний кронштейн 3 и подвижный кронштейн 4. На верхнем кронштейне находится электромагнит 5, фотоэлектрический датчик №1 6 и вороток с фиксатором 7 для закрепления и регулировки длины маятника.

Нижний кронштейн 4 с фотодатчиком № 2 8 можно перемещать вдоль стойки и фиксировать в выбранном положении. Маятник 9 — это диск, закрепленный на оси и подвешенный на двух нитях к неподвижному кронштейну. На диск накладываются сменные металлические кольца 10, изменяющие момент инерции системы. Маятник с наложенным кольцом удерживается в верхнем положении электромагнитом. Длина маятника определяется по миллиметровой шкале стойки прибора. Сигналы с фотодатчиков служат для автоматического пуска и остановки миллисекундомера 11.

Основные теоретические сведения

Основы кинематики поступательного и вращательного движения тела.

Поступательным называется движение, при котором любая прямая, проведённая в теле, остаётся параллельной сама себе при движении тела.

Основными особенностями такого вида движения являются следующие обстоятельства:

при поступательном движении все точки тела движутся совершенно одинаково, то есть имеют одну и ту же скорость, ускорение, траектории движения, совершают одинаковые перемещения и проходят одинаковый путь.

в этом случае при описании движения тела его можно рассматривать как материальную точку.

Для описания поступательного движения тел вводят в рассмотрение следующие понятия:

Для характеристики быстроты перемещения тела в пространстве вводят понятие скорости :

, размерность скорости: , метр в секунду.

Физический смысл скорости: она показывает, какое перемещение совершает тело за единицу времени при равномерном движении.

(пример: означает, что тело за каждую секунду перемещается на 5 м.)

Вектор скорости направлен по касательной к траектории движения материальной точки.

Для характеристики быстроты изменения скорости по величине и направлению вводят понятие ускорения :

, размерность ускорения:, метр на секунду в квадрате.

Таким образом, ускорением называется векторная величина, равная первой производной по времени от мгновенной скорости тела.

Физический смысл ускорения: оно показывает, на сколько изменяется скорость тела за единицу времени при равнопеременном движении.

(например: означает, что скорость тела изменяется на за каждую секунду.)

Направление вектора ускорения совпадает с направлением вектора.

При прямолинейном движении тела ускорение сонаправлено с вектором в случае ускоренного движения тела и противоположно направлено при замедленном движении.

При криволинейном движении вектор ускорения в общем случае образует с вектором мгновенной скорости некоторый угол .

Вращательным называется движение, при котором все точки тела описываю окружности, центры которых лежат на одной и той же прямой, называемой осью вращения тела.

Основной особенностью такого вида движения является следующее обстоятельство:

при вращательном движении все точки абсолютно твёрдого тела движутся с одной и той же угловой скоростью и угловым ускорением и совершают одинаковые угловые перемещения.

Для описания вращательного движения тела вводят в рассмотрение следующие понятия:

Угол поворота — это угол, на который поворачивается радиус-вектор любой точки тела при его вращении.

, радиан.

Элементарное угловое перемещение можно рассматривать как вектор , направление которого определяется по правилу буравчика (правилу правого винта):

если рукоятку буравчика вращать по направлению вращения тела, то поступательное движение буравчика будет совпадать с направлением вектора (см. рис. 3).

Удобство такого введения в следующем:

— модуль вектора однозначно определяет величину элементарного поворота тела ,

— направление вектора через правило буравчика определяет направление вращения тела,

— положение вектора в пространстве определяет

ось вращения тела.

Для характеристики быстроты вращения тела в пространстве вводится понятие угловой скорости .

, размерность, радиан в секунду.

Угловая скорость есть первая производная по времени от угла поворота.

Физический смысл угловой скорости: она показывает, на какой угол поворачивается радиус-вектор любой точки тела за единицу времени при равномерном вращении.

(например: означает, что за каждую секунду радиус-вектор поворачивается на 2 радиана)

Направление угловой скорости совпадает с направлением вектора , то есть она также определяется по правилу буравчика.

Для характеристики быстроты изменения угловой скорости вводится понятие углового ускорения :

, размерность, радиан на секунду в квадрате.

Физический смысл углового ускорения: оно показывает, на сколько изменяется угловая скорость тела за единицу времени при равнопеременном вращении.

(например: означает, что за каждую секунду угловая скорость тела изменяется на .)

Направление вектора углового ускорения совпадает с направлением вектора , то есть оно сонаправлено с вектором при ускоренном вращении тела и противоположно направлено при замедленном вращении.

Векторы, направление которых связывают с направлением вращения, называются псевдовекторами или аксиальными в отличие от обычных векторов (,, и т. д.), которые называются полярными.

Основы динамики поступательного и вращательного движения тела.

Для описания взаимодействия одного тела на другое вводят понятие силы .

Сила – векторная величина, являющаяся мерой механического воздействия на тело других тел или полей и характеризующая величину и направление этого воздействия.

Под действием силы тело может:

— деформироваться (статическое проявление силы),

— приобретать ускорение (динамическое проявление силы).

Основным уравнением динамики поступательного движения тела является второй закон Ньютона.

Одной из формулировок этого закона является следующая:

В инерциальной системе отсчёта векторная сумма всех сил, действующих на тело, равна произведению массы этого тела на сообщённое ему ускорение.

,

где — сила, , Ньютон, — масса тела, , килограмм, — ускорение тела,.

Масса тела является одной из важнейших понятий динамики, характеризующая инертные и гравитационные свойства тела. Масса тела – величина аддитивная (то есть масса тела равна сумме масс всех его частей).

Опыт показывает, что при описании вращательного движения твёрдого тела, кроме величины и направления действующей на тело силы, важной характеристикой является ещё и точка приложения этой силы.

В связи с этим вводят в рассмотрение понятие момента силы .

Моментом силы относительно неподвижной точки О называется векторная величина, равная векторному произведению радиус-вектора , проведённого из точки О в точку приложения силы, на саму эту силу:

или , где, Ньютон. метр.

Вектор момента силы является аксиальным, то есть его направление определяется по правилу векторного произведения (или правилу правого винта):

если винт вращать от первого сомножителя в векторном произведении ко второму по кратчайшему повороту, то поступательное движение винта укажет направление искомого вектора (см. рис. 4)

Следует помнить, что перед применением этого правила необходимо совместить начала перемножаемых векторов.

Можно использовать более простое правило буравчика:

если рукоятку буравчика вращать по направлению действия силы, то поступательное движение буравчика будет совпадать с направлением вектора момента силы (см. рис. 5).

На рис. 4 и 5 вектор направлен перпендикулярно плоскости чертежа на нас.

При этом следует помнить, что начало вектора совпадает с точкой О,

сам вектор перпендикулярен одновременно векторам и , а его величину можно определить по формуле:

или ,

где — угол между векторамии , а величина называется плечом силы , , метр.

Плечом силы называется кратчайшее расстояние от точки О до линии действия силы (см. рис. 5).

Величина зависит от выбора точки О.

Моментом силы относительно неподвижной оси Z называется скалярная величина, равная проекции на эту ось вектора момента силы относительно любой точки О, выбранной на этой оси:

.

Величина не зависит от выбора точки О на этой оси Z .

Наблюдения показывают, что при рассмотрении вращательного движения тела, основной характеристикой инертных свойств тела является не масса этого тела , а величина, которая называется моментом инерции тела .

Различают момент инерции тела относительно точки и момент инерции тела относительно оси.

Моментом инерции тела относительно точки О называется величина равная ,

где — кратчайшее расстояние от точки О до элементарной массы тела .

Моментом инерции тела относительно оси Z называется величина равная ,

где — кратчайшее расстояние от оси Z до элементарной массы тела .

Основной особенностью момента инерции тела является то обстоятельство, что его величина зависит от выбора оси вращения тела и распределение массы тела относительно рассматриваемой оси. То есть в отличие от массы , одно и то же тело имеет бесконечное множество моментов инерции , в зависимости от выбора оси вращения. В общем случае момент инерции тела относительно произвольной оси можно рассчитать по формуле:

,

где , — это функция зависимости плотности тела от координат, а сам интеграл определяется по всему объёму данного тела.

Однако на практике моменты инерции тел обычно определяют опытным путём, в связи с тем, что математически определить момент инерции тела иногда бывает очень сложно (более подробно о моменте инерции смотрите лабораторную работу 1-4).

Основным уравнением динамики вращательного движения тела является закон аналогичный второму закону

Ньютона, одной из возможных формулировок которого является следующая:

В инерциальной системе отчёта алгебраическая сумма моментов всех внешних сил , действующих на тело относительно неподвижной оси Z , равна произведению момента инерции этого тела относительно этой оси , на сообщённое ему угловое ускорение e :

.

Уравнения для поступательного и вращательного движения маятника без учёта сил сопротивления воздуха в нашем случае имеют вид:

где m — полная масса маятника, кг, I — момент инерции маятника, кг. м2, g — ускорение свободного падения, м/с2,

r — радиус оси маятника, м, Т — сила натяжения нити (одной), Н, — ускорение поступательного движения центра масс маятника, м/с2, e — угловое ускорение маятника, рад/с2.

Так как уравнение вращательного движения маховичка относительно оси вращения: ,

где — результирующий момент действующих на маятник сил относительно оси вращения, то с учетом уравнения (1), момент действующих сил можно определить по формуле:

.

Упражнение 1. Определение углового ускорения маятника и его дисперсии

1. Установите при помощи подвижного кронштейна высоту падения маятника h , заданную преподавателем. При помощи воротка с фиксатором 7 отрегулируйте длину нитей маятника Максвелла. Следите за тем, чтобы ось маятника была расположена горизонтально.

2. На диск маятника наложите стальное кольцо и запишите его массу . Убедитесь, что край стального кольца находится примерно на 2 мм ниже оптической оси нижнего фотоэлектрического датчика. Если нет, отрегулируйте высоту нижнего кронштейна с фотоэлектрическим датчиком. Замерьте радиус оси маятника .

3. Включите кнопку «СЕТЬ».

4. Нажмите кнопку «СБРОС» чтобы убедиться, что на табло установились нули.

5. Аккуратно вращая диск маятника, намотайте на его ось нить и зафиксируйте его в верхнем положении при помощи электромагнитов. При этом следите за тем, чтобы нити наматывались на ось виток к витку.

6. Нажмите кнопку «ПУСК» на передней панели миллисекундомера, удерживая её в течение одной секунды.

При этом маятник начнёт двигаться вниз, а таймер производить отсчет времени. В момент пересечения маятником оптиче ской оси фотодатчика отсчет времени должен прекратиться.

7. Прочитайте измеренное значение времени падения маятника и занести его в таблицу 1.

8. Нажмите кнопку «СБРОС» и приведите маятник в исходное положение (то есть зафиксируйте его в верхнем положении

при помощи электромагнита).

9. Аналогично проведите ещё четыре замера времени падения маятника с заданной высоты. Результаты занесите в таблицу 1.

h = = = Таблица 1

ЛАБОРАТОРНАЯ РАБОТА № 108

Цель работы: Определение момента инерции маятника Максвелла.

Приборы и принадлежности: маятник Максвелла FРМ-03, комплект сменных колец.

Теоретическое введение

Момент инерции – аналог массы. Как масса является мерой инертности при поступательном движении, так и момент инерции является мерой инертности при вращательном движении. При вращении тела вокруг различных осей моменты инерции различны. Величина момента инерции относительно какой-нибудь оси определяется пространственным распределением элементарных масс тела – геометрией тела. Аналитическое вычисление величины момента инерции производится путем интегрирования выражения

где r — плотность вещества в элементе объема dV, находящегося на расстоянии r от оси вращения.

При сложной форме поверхности тела и неравномерном распределении плотности аналитический подсчет величины момента инерции может быть достаточно сложной задачей.

Экспериментальное же определение момента инерции осуществить легко. В настоящей работе измеряется момент инерции металлических колец с помощью маятника Максвелла.

Маятник Максвелла – небольшой ролик, насаженный туго на ось, опускается под действием силы тяжести на двух нитях, предварительно намотанных на ось диска (рис.1).


Нити во время движения вниз разматываются до полной длины, раскрутившийся диск продолжает вращательное движение и наматывает нити на ось, вследствие чего он поднимается вверх, замедляя при этом свое вращение. Дойдя до верхней точки, диск опять будет опускаться вниз и т.д. Диск будет совершать колебания вверх и вниз, поэтому такое устройство называется маятником.

Уравнение движения маятника Максвелла можно записать, используя основной закон динамики поступательного и вращательного движений. Уравнения движения маятника Максвелла без учета сил трения имеют вид:

Для поступательного движения, исходя из II законы Ньютона

А для вращательного движения

Связь между тангенциальным ускорением ( ) поступательного движения и угловым ускорением ( ) вращательного движения имеет вид:

где m — масса маятника, J — момент инерции маятника,
T — натяжение одной нити, r -радиус оси маятника вместе с намотанной на нее нитью подвески.

Ускорение a может быть найдено через измеренное время движения t и проходимое маятником расстояние h из известного уравнения

Из уравнений (1) – (4) может быть получена расчетная формула для момента инерции маятника Максвелла:

где D – внешний диаметр оси маятника вместе с намотанной на нее нитью подвески определяется по формуле

где D0 – диаметр оси маятника в м; Dn – диаметр нити подвески в м; h – длина маятника, равная высоте, на которую он поднимается в м; m – масса маятника вместе с кольцом в кг.

где m0 – масса оси маятника в кг; mр – масса ролика в кг; mк – масса кольца, аксиально положенного на ролик в кг.

Описание рабочей установки и метода измерений

Параметры маятника:

• максимальная длина маятника h = 410 мм;

• количество сменных колец 3;

• размеры маятника: диаметр оси маятника D0 = 10 мм;

внешний диаметр ролика Dр= 86 мм;

внешний диаметр колец Dк= 105 мм;

диаметр нити подвески Dn= 0,5 мм.

Общий вид маятника FРМ показан на рис. 2.

SHAPE \* MERGEFORMAT

Рис. 2. Маятник Максвелла

Основание 1 оснащено регулируемыми ножками 2, которые позволяют произвести выравнивание прибора. В основании закреплена колонка 3, к которой прикреплен неподвижный верхний кронштейн 4 и подвижный нижний 5. На верхнем кронштейне находится электромагнит 6, фотоэлектрический датчик №1-7 и вороток 8 для закрепления и регулирования длины бифилярной подвески маятника.

Нижний кронштейн вместе с прикрепленным к нему фотоэлектрическим датчиком №2-9 можно перемещать вдоль колонки и фиксировать в произвольно избранном положении.

Маятник 10 – это ролик, закрепленный на оси и подвешенный по бифилярному способу, на который накладываются сменные кольца 11, изменяя, таким образом, момент инерции системы.

Маятник с наложенным кольцом удерживается в верхнем положении электромагнитом. Длина маятника определяется по миллиметровой шкале на колонке прибора. С целью облегчения этого измерения нижний кронштейн оснащен красным указателем, помещенным на высоте оптической оси нижнего фотоэлектрического датчика.

Ход работы

1. Включить сетевой шнур измерителя в сеть, нажать клавишу «СЕТЬ», проверяя, все ли индикаторы измерителя высвечивают цифру ноль, и засветилась ли лампочка фотоэлектрического датчика?

2. Нижний кронштейн прибора передвинуть и зафиксировать в крайнем положении.

3. На ролик маятника надеть кольцо, прижимая его до упора.

4. На ось маятника намотать нить подвески и зафиксировать ее. Проверить, отвечает ли нижняя грань кольца нулю шкалы на колонке. Если нет, отвинтить верхний кронштейн и отрегулировать его высоту. Привинтить верхний кронштейн.

5. Нажать клавишу «ПУСК» миллисекундомера FРМ-03.

6. Открутить гайку воротка для регулирования длины бифилярной подвески. Определить длину нити таким образом, чтобы край стального кольца после опускания маятника находился на 2 мм ниже оптической оси нижнего фотоэлектрического датчика. Одновременно произвести корректировку установки маятника, чтобы его ось была параллельна основанию прибора. Закрутить гайку воротка.

7. Отжать клавишу «ПУСК» миллисекундомера FРМ-03.

8. Намотать на ось маятника нить подвески, обращая внимание на то, чтобы она наматывалась равномерно.

9. Зафиксировать маятник при помощи электромагнита.

10. Повернуть маятник в направлении его движения на угол около 5 0 .

11. Нажать клавишу «СБРОС».

12. Нажать клавишу «ПУСК».

13. Определить значение времени падения маятника. Опыт повторить 5 раз.

14. Определить значение среднего времени падения маятника по формуле где n – количество выполненных замеров; ti – значение времени, полученное в i-ом замере;
t > — среднее значение времени падения маятника.

15. Со шкалы на вертикальной колонке прибора определить длину маятника.

16. Используя формулу (6) и известные значения диаметров D0 и Dn, определить диаметр оси вместе с намотанной на неё нитью.

17. По формуле (7) вычислить массу маятника вместе с аксиально наложенным кольцом. Значения масс отдельных элементов нанесены на них.

18. По формуле (5) определить момент инерции маятника.

19. Оценить погрешность результата измерений.

20. Данные результатов измерений и вычислений занести в таблицу.


источники:

http://pandia.ru/text/79/267/50697.php

http://phys-bsu.narod.ru/lib/mechanics/mechanics/lr108.htm