Какое уравнение называется нелинейным определение

Системы с нелинейными уравнениями

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) ,(1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 ,(2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 .(4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 .(5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 .(6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 .(8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Разница между линейным уравнением и нелинейным уравнением

Разница между линейным уравнением и нелинейным уравнением — Наука

Содержание:

Линейное уравнение против нелинейного уравнения

В математике алгебраические уравнения — это уравнения, которые составлены с использованием полиномов. В явном виде уравнения будут иметь вид P (Икс) = 0, где Икс вектор из n неизвестных переменных, а P — многочлен. Например, P (x, y) = 4x 5 + ху 3 + y + 10 = 0 — алгебраическое уравнение с двумя переменными, записанное явно. Также (x + y) 3 = 3x 2 у — 3zy 4 является алгебраическим уравнением, но в неявной форме и примет вид Q (x, y, z) = x 3 + y 3 + 3xy 2 + 3zy 4 = 0, когда-то написано явно.

Важной характеристикой алгебраического уравнения является его степень. Он определяется как наивысшая степень членов уравнения. Если терм состоит из двух или более переменных, сумма показателей каждой переменной будет считаться мощностью члена. Заметим, что согласно этому определению P (x, y) = 0 имеет степень 5, а Q (x, y, z) = 0 — степень 5.

Линейные уравнения и нелинейные уравнения представляют собой два раздела, определенные на системе алгебраических уравнений. Степень уравнения — это фактор, который отличает их друг от друга.

Что такое линейное уравнение?

Линейное уравнение — это алгебраическое уравнение степени 1. Например, 4x + 5 = 0 — это линейное уравнение одной переменной. x + y + 5z = 0 и 4x = 3w + 5y + 7z — линейные уравнения с 3 и 4 переменными соответственно. В общем случае линейное уравнение от n переменных будет иметь вид m1Икс1 + м2Икс2 +… + Мп-1Иксп-1 + мпИксп = б. Здесь xяS — неизвестные переменные, mяS и b — действительные числа, где каждое из mя не равно нулю.

Такое уравнение представляет собой гиперплоскость в n-мерном евклидовом пространстве. В частности, линейное уравнение с двумя переменными представляет собой прямую линию в декартовой плоскости, а линейное уравнение с тремя переменными представляет собой плоскость в трехмерном евклидовом пространстве.

Что такое нелинейное уравнение?

Квадратное уравнение — это алгебраическое уравнение, которое не является линейным. Другими словами, нелинейное уравнение — это алгебраическое уравнение степени 2 или выше. Икс 2 + 3x + 2 = 0 — нелинейное уравнение с одной переменной. Икс 2 + y 3 + 3xy = 4 и 8yzx 2 + y 2 + 2z 2 + x + y + z = 4 — примеры нелинейных уравнений от 3 и 4 переменных соответственно.

Нелинейное уравнение второй степени называется квадратным уравнением. Если степень равна 3, то это называется кубическим уравнением. Уравнения степени 4 и степени 5 называются уравнениями четвертой и пятой степени соответственно. Было доказано, что не существует аналитического метода для решения любого нелинейного уравнения степени 5, и это верно и для любой более высокой степени. Решаемые нелинейные уравнения представляют собой гиперповерхности, которые не являются гиперплоскостями.

В чем разница между линейным уравнением и нелинейным уравнением?

• Линейное уравнение — это алгебраическое уравнение степени 1, а нелинейное уравнение — это алгебраическое уравнение степени 2 или выше.

• Несмотря на то, что любое линейное уравнение разрешимо аналитически, в нелинейных уравнениях это не так.

• В n-мерном евклидовом пространстве пространство решений линейного уравнения с n переменными является гиперплоскостью, а пространство решений нелинейного уравнения с n переменными — гиперповерхностью, которая не является гиперплоскостью. (Квадрики, кубические поверхности и др.)

НЕЛИНЕ́ЙНОЕ УРАВНЕ́НИЕ

  • В книжной версии

    Том 22. Москва, 2013, стр. 345-346

    Скопировать библиографическую ссылку:

    НЕЛИНЕ́ЙНОЕ УРАВНЕ́НИЕ, ал­геб­раи­че­ское или транс­цен­дент­ное урав­не­ние ви­да $$f(x)=0,\tag1$$ где $x$ – дей­ст­ви­тель­ное чис­ло, $f(x)$ – не­ли­ней­ная функ­ция. Сис­те­мой Н. у. на­зы­ва­ет­ся сис­те­ма $$\beginf_1(x_1, x_2. x_n)=0,\\ f_2(x_1, x_2. x_n)=0,\\ . \\ f_n(x_1, x_2. x_n)=0,\end\tag2$$ не яв­ляю­щая­ся сис­те­мой ли­ней­ных ал­геб­ра­ич. урав­не­ний. Урав­не­ние (1) и сис­те­ма (2) мо­гут трак­то­вать­ся как не­ли­ней­ное опе­ра­тор­ное урав­не­ние $$L (u)=g\tag3$$ с не­ли­ней­ным опе­ра­то­ром $L$ , дей­ст­вую­щим из ко­неч­но­мер­но­го век­тор­но­го про­стран­ст­ва $R^n$ в $R^n$ .


    источники:

    http://ru.strephonsays.com/linear-equation-and-vs-nonlinear-equation-9933

    http://bigenc.ru/mathematics/text/2258043