Какое уравнение называют рациональным 8 класс

Рациональные уравнения с примерами решения

Содержание:

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения

Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что когда

Пример №202

Решите уравнение

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:

Окончательно получим уравнение:

Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.

Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду

2) приравнять числитель к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.

Использование основного свойства пропорции

Если то где

Пример №203

Решите уравнение

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:

По основному свойству пропорции имеем:

Решим это уравнение:

откуда

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду

3) записать целое уравнение и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение

Умножим обе части уравнения на это выражение:

Получим: а после упрощения: то есть откуда или

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

где — натуральное число,

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи

Рассмотрим степени числа 3 с показателями — это соответственно

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:

Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что

Нулевая степень отличного от нуля числа а равна единице, то есть при

Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если натуральное число, то

Решение целых и дробно рациональных уравнений

Продолжаем разговор про решение уравнений. В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями.

Навигация по странице.

Что такое рациональные уравнения?

В начале 8 класса на уроках алгебры начинается всестороннее изучение рациональных выражений. А вскоре, естественно, начинают встречаться уравнения, содержащие рациональные выражения в своих записях. Такие уравнения назвали рациональными. Сформулируем озвученную информацию в виде определения рациональных уравнений.

Рациональные уравнения — это уравнения, обе части которого являются рациональными выражениями.

Иногда встречается определение в немного другой формулировке:

Рациональными уравнениями называют уравнения, в левой части которого находится рациональное выражение, а в правой – нуль.

Здесь стоит заметить, что по сути оба приведенных определения эквивалентны, так как для любых рациональных выражений P и Q уравнения P=Q и P−Q=0 являются равносильными уравнениями.

Отталкиваясь от озвученных определений, приведем несколько примеров рациональных уравнений. Например, x=1 , 2·x−12·x 2 ·y·z 3 =0 , , — это все рациональные уравнения.

Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т.д. переменными. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания.

Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Дадим соответствующие определения.

Рациональное уравнение называют целым, если и левая, и правая его части являются целыми рациональными выражениями.

Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным (или дробным рациональным).

Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную (или переменную в знаменателе). Так 3·x+2=0 и (x+y)·(3·x 2 −1)+x=−y+0,5 – это целые рациональные уравнения, обе их части являются целыми выражениями. А и x:(5·x 3 +y 2 )=3:(x−1):5 – примеры дробных рациональных уравнений.

Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями.

Решение целых уравнений

Одним из основных подходов к решению целых уравнений является их сведение к равносильным алгебраическим уравнениям. Это можно сделать всегда, выполнив следующие равносильные преобразования уравнения:

  • сначала выражение из правой части исходного целого уравнения переносят в левую часть с противоположным знаком, чтобы получить нуль в правой части;
  • после этого в левой части уравнения образовавшееся целое выражение преобразуют в многочлен стандартного вида.

В результате получается алгебраическое уравнение, которое равносильно исходному целому уравнению. Так в самых простых случаях решение целых уравнений сводятся к решению линейных или квадратных уравнений, а в общем случае – к решению алгебраического уравнения степени n . Для наглядности разберем решение примера.

Найдите корни целого уравнения 3·(x+1)·(x−3)=x·(2·x−1)−3 .

Сведем решение этого целого уравнения к решению равносильного ему алгебраического уравнения. Для этого, во-первых, перенесем выражение из правой части в левую, в результате приходим к уравнению 3·(x+1)·(x−3)−x·(2·x−1)+3=0 . И, во-вторых, преобразуем выражение, образовавшееся в левой части, в многочлен стандартного вида, выполнив необходимые действия с многочленами: 3·(x+1)·(x−3)−x·(2·x−1)+3= (3·x+3)·(x−3)−2·x 2 +x+3= 3·x 2 −9·x+3·x−9−2·x 2 +x+3=x 2 −5·x−6 . Таким образом, решение исходного целого уравнения сводится к решению квадратного уравнения x 2 −5·x−6=0 .

Вычисляем его дискриминант D=(−5) 2 −4·1·(−6)=25+24=49 , он положительный, значит, уравнение имеет два действительных корня, которые находим по формуле корней квадратного уравнения:

Для полной уверенности выполним проверку найденных корней уравнения. Сначала проверяем корень 6 , подставляем его вместо переменной x в исходное целое уравнение: 3·(6+1)·(6−3)=6·(2·6−1)−3 , что то же самое, 63=63 . Это верное числовое равенство, следовательно, x=6 действительно является корнем уравнения. Теперь проверяем корень −1 , имеем 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3 , откуда, 0=0 . При x=−1 исходное уравнение также обратилось в верное числовое равенство, следовательно, x=−1 тоже является корнем уравнения.

Здесь еще нужно заметить, что с представлением целого уравнения в виде алгебраического уравнения связан термин «степень целого уравнения». Дадим соответствующее определение:

Степенью целого уравнения называют степень равносильного ему алгебраического уравнения.

Согласно этому определению целое уравнение из предыдущего примера имеет вторую степень.

На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения.

В таких случаях иногда выручает подход к решению целых рациональных уравнений, основанный на методе разложения на множители. При этом придерживаются следующего алгоритма:

  • сначала добиваются, чтобы в правой части уравнения был нуль, для этого переносят выражение из правой части целого уравнения в левую;
  • затем, полученное выражение в левой части представляют в виде произведения нескольких множителей, что позволяет перейти к совокупности нескольких более простых уравнений.

Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере.

Решите целое уравнение (x 2 −1)·(x 2 −10·x+13)= 2·x·(x 2 −10·x+13) .

Сначала как обычно переносим выражение из правой части в левую часть уравнения, не забыв изменить знак, получаем (x 2 −1)·(x 2 −10·x+13)− 2·x·(x 2 −10·x+13)=0 . Здесь достаточно очевидно, что не целесообразно преобразовывать левую часть полученного уравнения в многочлен стандартного вида, так как это даст алгебраическое уравнение четвертой степени вида x 4 −12·x 3 +32·x 2 −16·x−13=0 , решение которого сложно.

С другой стороны, очевидно, что в левой части полученного уравнения можно вынести за скобки общий множитель x 2 −10·x+13 , тем самым представив ее в виде произведения. Имеем (x 2 −10·x+13)·(x 2 −2·x−1)=0 . Полученное уравнение равносильно исходному целому уравнению, и его, в свою очередь, можно заменить совокупностью двух квадратных уравнений x 2 −10·x+13=0 и x 2 −2·x−1=0 . Нахождение их корней по известным формулам корней через дискриминант не составляет труда, корни равны . Они являются искомыми корнями исходного уравнения.

Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной. В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения.

Найдите действительные корни рационального уравнения (x 2 +3·x+1) 2 +10=−2·(x 2 +3·x−4) .

Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения.

Здесь несложно заметить, что можно ввести новую переменную y , и заменить ею выражение x 2 +3·x . Такая замена приводит нас к целому уравнению (y+1) 2 +10=−2·(y−4) , которое после переноса выражения −2·(y−4) в левую часть и последующего преобразования образовавшегося там выражения, сводится к квадратному уравнению y 2 +4·y+3=0 . Корни этого уравнения y=−1 и y=−3 легко находятся, например, их можно подобрать, основываясь на теореме, обратной теореме Виета.

Теперь переходим ко второй части метода введения новой переменной, то есть, к проведению обратной замены. Выполнив обратную замену, получаем два уравнения x 2 +3·x=−1 и x 2 +3·x=−3 , которые можно переписать как x 2 +3·x+1=0 и x 2 +3·x+3=0 . По формуле корней квадратного уравнения находим корни первого уравнения . А второе квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен ( D=3 2 −4·3=9−12=−3 ).

Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения.

Решение дробно рациональных уравнений

Сначала будет полезно разобраться, как решать дробно рациональные уравнения вида , где p(x) и q(x) – целые рациональные выражения. А дальше мы покажем, как свести решение остальных дробно рациональных уравнений к решению уравнений указанного вида.

В основе одного из подходов к решению уравнения лежит следующее утверждение: числовая дробь u/v , где v – отличное от нуля число (иначе мы столкнемся с делением на нуль, которое не определено), равна нулю тогда и только тогда, когда ее числитель равен нулю, то есть, тогда и только тогда, когда u=0 . В силу этого утверждения, решение уравнения сводится к выполнению двух условий p(x)=0 и q(x)≠0 .

Этому заключению соответствует следующий алгоритм решения дробно рационального уравнения . Чтобы решить дробное рациональное уравнение вида , надо

  • решить целое рациональное уравнение p(x)=0 ;
  • и проверить, выполняется ли для каждого найденного корня условие q(x)≠0 , при этом
    • если выполняется, то этот корень является корнем исходного уравнения;
    • если не выполняется, то этот корень – посторонний, то есть, не является корнем исходного уравнения.

Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения.

Найдите корни уравнения .

Это дробно рациональное уравнение, причем вида , где p(x)=3·x−2 , q(x)=5·x 2 −2=0 .

Согласно алгоритму решения дробно рациональных уравнений этого вида, нам сначала надо решить уравнение 3·x−2=0 . Это линейное уравнение, корнем которого является x=2/3 .

Осталось выполнить проверку для этого корня, то есть проверить, удовлетворяет ли он условию 5·x 2 −2≠0 . Подставляем в выражение 5·x 2 −2 вместо x число 2/3 , получаем . Условие выполнено, поэтому x=2/3 является корнем исходного уравнения.

К решению дробного рационального уравнения можно подходить с немного другой позиции. Это уравнение равносильно целому уравнению p(x)=0 на области допустимых значений (ОДЗ) переменной x исходного уравнения. То есть, можно придерживаться такого алгоритма решения дробно рационального уравнения :

  • решить уравнение p(x)=0 ;
  • найти ОДЗ переменной x ;
  • взять корни, принадлежащие области допустимых значений, — они являются искомыми корнями исходного дробного рационального уравнения.

Для примера решим дробное рациональное уравнение по этому алгоритму.

Во-первых, решаем квадратное уравнение x 2 −2·x−11=0 . Его корни можно вычислить, используя формулу корней для четного второго коэффициента, имеем D1=(−1) 2 −1·(−11)=12 , и .

Во-вторых, находим ОДЗ переменной x для исходного уравнения. Ее составляют все числа, для которых x 2 +3·x≠0 , что то же самое x·(x+3)≠0 , откуда x≠0 , x≠−3 .

Остается проверить, входят ли найденные на первом шаге корни в ОДЗ. Очевидно, да. Следовательно, исходное дробно рациональное уравнение имеет два корня .

Отметим, что такой подход выгоднее первого, если легко находится ОДЗ, и особенно выгоден, если еще при этом корни уравнения p(x)=0 иррациональные, например, , или рациональные, но с довольно большим числителем и/или знаменателем, к примеру, 127/1101 и −31/59 . Это связано с тем, что в таких случаях проверка условия q(x)≠0 потребует значительных вычислительных усилий, и проще исключить посторонние корни по ОДЗ.

В остальных случаях при решении уравнения , особенно когда корни уравнения p(x)=0 целые, выгоднее использовать первый из приведенных алгоритмов. То есть, целесообразно сразу находить корни целого уравнения p(x)=0 , после чего проверять, выполняется ли для них условие q(x)≠0 , а не находить ОДЗ, после чего решать уравнение p(x)=0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Рассмотрим решение двух примеров для иллюстрации оговоренных нюансов.

Найдите корни уравнения .

Сначала найдем корни целого уравнения (2·x−1)·(x−6)·(x 2 −5·x+14)·(x+1)=0 , составленного с использованием числителя дроби. Левая часть этого уравнения – произведение, а правая – нуль, поэтому, согласно методу решения уравнений через разложение на множители, это уравнение равносильно совокупности четырех уравнений 2·x−1=0 , x−6=0 , x 2 −5·x+14=0 , x+1=0 . Три из этих уравнений линейные и одно – квадратное, их мы умеем решать. Из первого уравнения находим x=1/2 , из второго – x=6 , из третьего – x=7 , x=−2 , из четвертого – x=−1 .

С найденными корнями достаточно легко выполнить их проверку на предмет того, не обращается ли при них в нуль знаменатель дроби, находящейся в левой части исходного уравнения, а определить ОДЗ, напротив, не так просто, так как для этого придется решать алгебраическое уравнение пятой степени. Поэтому, откажемся от нахождения ОДЗ в пользу проверки корней. Для этого по очереди подставляем их вместо переменной x в выражение x 5 −15·x 4 +57·x 3 −13·x 2 +26·x+112 , вычисляем значения выражений, получающихся после подстановки, и сравниваем их с нулем: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0 ;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Таким образом, 1/2 , 6 и −2 являются искомыми корнями исходного дробно рационального уравнения, а 7 и −1 – посторонние корни.

Найдите корни дробного рационального уравнения .

Сначала найдем корни уравнения (5·x 2 −7·x−1)·(x−2)=0 . Это уравнение равносильно совокупности двух уравнений: квадратного 5·x 2 −7·x−1=0 и линейного x−2=0 . По формуле корней квадратного уравнения находим два корня , а из второго уравнения имеем x=2 .

Проверять, не обращается ли в нуль знаменатель при найденных значениях x , достаточно неприятно. А определить область допустимых значений переменной x в исходном уравнении достаточно просто. Поэтому, будем действовать через ОДЗ.

В нашем случае ОДЗ переменной x исходного дробно рационального уравнения составляют все числа, кроме тех, для которых выполняется условие x 2 +5·x−14=0 . Корнями этого квадратного уравнения являются x=−7 и x=2 , откуда делаем вывод про ОДЗ: ее составляют все такие x , что .

Остается проверить, принадлежат ли найденные корни и x=2 области допустимых значений. Корни — принадлежат, поэтому, они являются корнями исходного уравнения, а x=2 – не принадлежит, поэтому, это посторонний корень.

Еще полезным будет отдельно остановиться на случаях, когда в дробном рациональном уравнении вида в числителе находится число, то есть, когда p(x) представлено каким-либо числом. При этом

  • если это число отлично от нуля, то уравнение не имеет корней, так как дробь равна нулю тогда и только тогда, когда ее числитель равен нулю;
  • если это число нуль, то корнем уравнения является любое число из ОДЗ.

Решите дробное рациональное уравнение .

Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней.

В числителе дроби, находящейся в левой части данного дробного рационального уравнения, находится нуль, поэтому значение этой дроби равно нулю для любого x , при котором она имеет смысл. Другими словами, решением этого уравнения является любое значение x из ОДЗ этой переменной.

Осталось определить эту область допустимых значений. Она включает все такие значения x , при которых x 4 +5·x 3 ≠0 . Решениями уравнения x 4 +5·x 3 =0 являются 0 и −5 , так как, это уравнение равносильно уравнению x 3 ·(x+5)=0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 =0 и x+5=0 , откуда и видны эти корни. Следовательно, искомой областью допустимых значений являются любые x , кроме x=0 и x=−5 .

Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти.

Наконец, пришло время поговорить о решении дробных рациональных уравнений произвольного вида. Их можно записать как r(x)=s(x) , где r(x) и s(x) – рациональные выражения, причем хотя бы одно из них дробное. Забегая вперед, скажем, что их решение сводится к решению уравнений уже знакомого нам вида .

Известно, что перенос слагаемого из одной части уравнения в другую с противоположным знаком приводит к равносильному уравнению, поэтому уравнению r(x)=s(x) равносильно уравнение r(x)−s(x)=0 .

Также мы знаем, что можно любое рациональное выражение преобразовать в рациональную дробь, тождественно равную этому выражению. Таким образом, рациональное выражение в левой части уравнения r(x)−s(x)=0 мы всегда можем преобразовать в тождественно равную рациональную дробь вида .

Так мы от исходного дробного рационального уравнения r(x)=s(x) переходим к уравнению , а его решение, как мы выяснили выше, сводится к решению уравнения p(x)=0 .

Но здесь обязательно надо учитывать тот факт, что при замене r(x)−s(x)=0 на , и дальше на p(x)=0 , может произойти расширение области допустимых значений переменной x .

Следовательно, исходное уравнение r(x)=s(x) и уравнение p(x)=0 , к которому мы пришли, могут оказаться неравносильными, и, решив уравнение p(x)=0 , мы можем получить корни, которые будут посторонними корнями исходного уравнения r(x)=s(x) . Выявить и не включать в ответ посторонние корни можно, либо выполнив проверку, либо проверив их принадлежность ОДЗ исходного уравнения.

Обобщим эту информацию в алгоритм решения дробного рационального уравнения r(x)=s(x) . Чтобы решить дробное рациональное уравнение r(x)=s(x) , надо

  • Получить справа нуль с помощью переноса выражения из правой части с противоположным знаком.
  • Выполнить действия с дробями и многочленами в левой части уравнения, тем самым преобразовав ее в рациональную дробь вида .
  • Решить уравнение p(x)=0 .
  • Выявить и исключить посторонние корни, что делается посредством их подстановки в исходное уравнение или посредством проверки их принадлежности ОДЗ исходного уравнения.

Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений:
.

Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации.

Решите дробное рациональное уравнение .

Будем действовать в соответствии с только что полученным алгоритмом решения. И сначала перенесем слагаемые из правой части уравнения в левую, в результате переходим к уравнению .

На втором шаге нам нужно преобразовать дробное рациональное выражение в левой части полученного уравнения к виду дроби . Для этого выполняем приведение рациональных дробей к общему знаменателю и упрощаем полученное выражение: . Так мы приходим к уравнению .

На следующем этапе нам нужно решить уравнение −2·x−1=0 . Находим x=−1/2 .

Остается проверить, не является ли найденное число −1/2 посторонним корнем исходного уравнения. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Продемонстрируем оба подхода.

Начнем с проверки. Подставляем в исходное уравнение вместо переменной x число −1/2 , получаем , что то же самое, −1=−1 . Подстановка дает верное числовое равенство, поэтому, x=−1/2 является корнем исходного уравнения.

Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Областью допустимых значений исходного уравнения является множество всех чисел, кроме −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Найденный на предыдущем шаге корень x=−1/2 принадлежит ОДЗ, следовательно, x=−1/2 является корнем исходного уравнения.

Рассмотрим еще пример.

Найдите корни уравнения .

Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма.

Во-первых, переносим слагаемое из правой части в левую, получаем .

Во-вторых, преобразуем выражение, образовавшееся в левой части: . В результате приходим к уравнению x=0 .

Его корень очевиден – это нуль.

На четвертом шаге остается выяснить, не является ли найденный корень посторонним для исходного дробно рационального уравнения. При его подстановке в исходное уравнение получается выражение . Очевидно, оно не имеет смысла, так как содержит деление на нуль. Откуда заключаем, что 0 является посторонним корнем. Следовательно, исходное уравнение не имеет корней.

В заключение добавим, что совсем не обязательно слепо придерживаться приведенного алгоритма решения дробных рациональных уравнений, хотя он и является универсальным. Просто иногда другие равносильные преобразования уравнений позволяют прийти к результату быстрее и проще.

Несомненно, это дробно рациональное уравнение можно решать, выполнив перенос слагаемого из правой части в левую, дальше преобразовать выражение в левой части к виду p(x)/q(x) , дальше решить уравнение p(x)=0 , и отсеять посторонние корни.

Но можно поступить и иначе, например, так.

Сначала отнять от обеих частей уравнения 7 , что приводит к уравнению . Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, . Теперь вычитаем из обеих частей тройки: . По аналогии , откуда , и дальше .

Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения.

Урок по теме «Решение дробных рациональных уравнений». 8-й класс

Разделы: Математика

Класс: 8

Цели урока:

  • формирование понятия дробных рационального уравнения;
  • рассмотреть различные способы решения дробных рациональных уравнений;
  • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  • обучить решению дробных рациональных уравнений по алгоритму;
  • проверка уровня усвоения темы путем проведения тестовой работы.
  • развитие умения правильно оперировать полученными знаниями, логически мыслить;
  • развитие интеллектуальных умений и мыслительных операций — анализ, синтез, сравнение и обобщение;
  • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
  • развитие критического мышления;
  • развитие навыков исследовательской работы.
  • воспитание познавательного интереса к предмету;
  • воспитание самостоятельности при решении учебных задач;
  • воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

  1. Что такое уравнение? (Равенство с переменной или переменными.)
  2. Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа — в правую. Привести подобные слагаемые. Найти неизвестный множитель).
  3. Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
  4. Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
  5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
  6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

х 2 -4х-2х+8 = х 2 +3х+2х+6

х 2 -6х-х 2 -5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

Теперь попытайтесь решить уравнение №7 одним из способов.


источники:

http://www.cleverstudents.ru/equations/rational_equations.html

http://urok.1sept.ru/articles/559882