Какой график иллюстрирует решение уравнения x 2 4

Построить график функции y = x²-4x онлайн . Таблица точек . Нули функции .

График функции y = x²-4x (x во 2-ой степени (в квадрате) минус 4 умножить на x)

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово «авто» или оставить поля пустыми (эквивалентно «авто»)

Округление:

Таблица точек функции f(x) = x^2-4x

Показать/скрыть таблицу точек

xf(x)
-10140
-9.5128.25
-9117
-8.5106.25
-896
-7.586.25
-777
-6.568.25
-660
-5.552.25
-545
-4.538.25
-432
-3.526.25
-321
-2.516.25
-212
-1.58.25
-15
-0.52.25
00
0.5-1.75
1-3
1.5-3.75
2-4
2.5-3.75
3-3
3.5-1.75
40
4.52.25
55
5.58.25
612
6.516.25
721
7.526.25
832
8.538.25
945
9.552.25
1060

График построен по уравнению, но можно воспользоваться таблицей точек, чтобы построить такой же график по точкам .

Чтобы скачать график, нажмите на кнопку ‘Скачать график’ под ним .

Построение графика функции y = x²-4x по шагам

x²-4x = 0 — это квадратная функция. Коэффициенты a, b, c нашей квадратной функции равны:

Ее график — симметричная парабола. Найдем направление ветвей нашей параболы.

Направление ветвей параболы

Если коэффициент a положительный, то ветви направлены вверх, если отрицательный — вниз.

У нас коэффициент a — положительный, значит ветви нашей параболы направлены вверх.

Найдем координаты вершины параболы

Для того, чтобы найти y, подставим наш найденный x в уравнение:

Координаты вершины нашей нашей параболы [x0, y0] = [2, -4].

Решение уравнения x²-4x = 0 . Поиск нулей функции.

Найдем точки пересечения с осью x. Для этого y должен равняться 0. То есть решим уравнение: x²-4x = 0

x²-4x = 0 — это квадратное уравнение, найдем его дискриминант:

Так как дискриминант больше нуля, то у данного уравнения два корня, найдем их:

Подставим значения x1 и x2 в наше уравнение:

То есть график функции пересекается с осью x в точках 4 и 0 . Наши точки :

Перечеяение с осью y

Найдем точку пересечения с осью y. Она будет одна, при x3 = 0:

У нас эта точка равна точке пересечения с осью x [x3, y3] = [0, 0].

Построение графика квадратной функции

  1. Для построения графика нужно провести вспомогательную линию (можно пунктиром) из точки вершины параболы [2, -4] параллельно оси y. Относительно этой линии парабола будет идти симметрично. Левая и правая часть графика относительно этой линии называется ветви параболы.
  2. Для построения симметричной параболы нужно минимум три точки — вершина параболы и еще две. Эти две точки мы возьмем из нашего квадратного уравнения. И того у нас есть четыре точки [x, y] для построения нашего графика:
    • [2, -4]
    • [4, 0]
    • [0, 0]
    • [0, 0]

Для большей точности можно взять еще несколько из таблицы точек. Чтобы высчитать их нужно взять значение x из таблицы и подставить в функцию y = x²-4x. Калькулятор это сделал за Вас.

  • Строим наш график по найденным точкам симметрично вспомогательной линии.
  • Свойства функции y = x²-4x

    • Область определения \(x \in (- \infty;+ \infty)\) — все действительные числа.
    • Область значений \(y \in [-4;+ \infty)\) — все действительные числа больше или равные -4.
    • Функция убывает при \(x \lt 2\), функция возрастает при \(x \gt 2\).
    • Наименьшее значение функции y = -4 — в вершине параболы при x = 2.

    Инструменты для написания уравнений

    Для написания математических выражений доступно следующее:

    Функции

    Операторы

    ^ — возведение в степень

    x^(1/n) — корень n-ой степени от числа x. То есть 8^(1/3) = 3 √8 = 2

    Решение задач по математике онлайн

    //mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

    Калькулятор онлайн.
    Решение показательных уравнений.

    Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
    Правила ввода функций >> Почему решение на английском языке? >>
    С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
    Решить уравнение

    Немного теории.

    Показательная функция, её свойства и график

    Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
    1) a n a m = a n+m

    4) (ab) n = a n b n

    7) a n > 1, если a > 1, n > 0

    8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

    Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, \( a \neq 1\)

    Показательная функция обладает следующими свойствами

    1) Область определения показательной функции — множество всех действительных чисел.
    Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

    2) Множество значений показательной функции — множество всех положительных чисел.
    Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leqslant 0\), и имеет корень при любом b > 0.

    3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
    Если х x при a > 0.
    Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

    График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
    Если х

    Показательные уравнения

    Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

    Решить уравнение 2 3x • 3 x = 576
    Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
    Ответ х = 2

    Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
    Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
    откуда 3 х — 2 = 1, x — 2 = 0, x = 2
    Ответ х = 2

    Решить уравнение 3 х = 7 х
    Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac<3^x> <7^x>= 1 \), откуда \( \left( \frac<3> <7>\right) ^x = 1 \), х = 0
    Ответ х = 0

    Решить уравнение 9 х — 4 • 3 х — 45 = 0
    Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
    Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
    Ответ х = 2

    Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
    Запишем уравнение в виде
    3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
    2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
    2 х — 2 • 23 = 5 х — 2 • 23
    \( \left( \frac<2> <5>\right) ^ = 1 \)
    x — 2 = 0
    Ответ х = 2

    Решить уравнение 3 |х — 1| = 3 |х + 3|
    Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
    Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
    х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
    Проверка показывает, что х = -1 — корень исходного уравнения.
    Ответ х = -1

    Методика организации решения уравнений графическим способом как средство формирования графических умений у учащихся

    Разделы: Математика

    Графический метод обладает рядом преимуществ:

    • он часто проще аналитического;
    • обладает наглядностью. Особенно когда нет решений или требуется установить количество корней.
    • он красив и доставляет эстетическое наслаждение. Выполнять графики нужно в цвете. Это помогает в выборе ответа.

    Умение строить графики функций не является самоцелью. Часто построение графиков связано с исследованием поведения функций. Однако необходимость построения графиков облегчают нахождение решений уравнений и неравенств, сокращая или упрощая аналитические выкладки и часто при этом являются единственным методом решения таких задач. Графический метод решения способствует лучшему усвоению ряда понятий: функции, корней уравнения и неравенства, систем уравнений. При этом целесообразно при графическом решении уравнений устанавливать связи с такими свойствами функций как возрастание и убывание, знакопостоянство, обращение функции в ноль и т.д., что помогает глубже понять функциональную зависимость между величинами. Изучение поведения функций и построение их графиков является важным разделом математики. Свободное владение техникой построения графиков часто помогает решать многие задачи и порой является единственным средством их решения. Кроме того, умение строить график представляет большой самостоятельный интерес. Материал, связанный с построением графиков функций, в средней школе изучается недостаточно полно с точки зрения требований, предъявляемых на экзаменах. Поэтому задачи на построение графиков нередко вызывают затруднения у учащихся.

    Для того, чтобы по графикам можно было получать достаточно приемлемые числовые ответы, графики должны быть особенно тщательно построены. Решается задача организации работы таким образом, чтобы выработать навыки быстрого построения графиков элементарных функций и их преобразований. Работа над формированием графических умений начинается с 5-го класса.

    Изящно выполненная работа способствует развитию чувства красоты, удовлетворения от проделанной работы.

    Изучение поведения функций и построение их графиков являются важным разделом школьного курса. Свободное владение техникой построения графиков часто помогает решать сложные задачи, а порой является единственным средством их решения. Кроме того, умение строить графики функций представляет большой интерес для самих учащихся. Однако на базе основной школы материал, связанный с этим вопросом, представлен несколько хаотично, изучается недостаточно полно, многие важные моменты не входят в программу.

    Цель – прояснить и дополнить школьный материал, связанный с функциями и построение их графиков, применением их к решению уравнений, их систем.

    В требованиях к уровню подготовки выпускников по разделу «Функции и графики» прописано:

    • решать уравнения, системы уравнений, используя свойства функций и их графические представления;
    • находить приближённые решения уравнений и их систем, используя графический метод.

    В преподавание алгебры по учебнику под редакцией А.С.Теляковского. Линейная функция и функции у=х 2 , у=х 3 изучаются в 7 классе. Практически не вырабатываются навыки в применении графиков этих функций. Единственное упражнение: найти координаты точек пересечения графиков функций у=8,5х и у=0,5х-19,5. графики линейных функций только иллюстрируют решение систем линейных уравнений.

    Автор вводит некоторые упражнения, необходимые в дальнейшем при решении уравнений и их систем:

    — постройте в одной и той же координатной плоскости а) у=х 2 ; у=4; б) у=х 2 ; у=2х.

    — изобразите схематически графики функций у = -0,9х + 4; у = 2,3х; у = х/10 . Но упражнения вводятся как дополнительные. И в «Задачах повышенной трудности» (в конце учебника) есть уравнения, которые тоже можно решать графическим способом: |х -3| = 7; |х+2| = 9; |4 — х| = 1,5.

    В 8 классе изучаются функции у = к/х; у =. Представлены функции у = 4/|х|, у = -6/|х|.

    — Могут ли графики функций у=к/х и у = ах +в пересекаться

    а) в одной точке;

    б) в двух точках;

    в) в трёх точках.

    — Могут ли графики функций у = к/х и у = ах +в пересекаться в двух точках, лежащих

    а) в одной четверти;

    б) в первой и второй четвертях;

    в) в первой и третьей четвертях.

    Опять же эти упражнения в дополнительных.

    В 8 классе обучающихся знакомят с графическим способом решения уравнений (8/х = -х+6; (8/х = х 2 ). Появляются уравнения третьей степени, которые не решаются аналитическим способом. (х 3 — х + 1 = 0; х 3 + 2х — 4=0) На изучение этой темы отводится 1 час.

    В 9 классе подробно изучается квадратичная функция и её график. Получены обучающимися представления о преобразовании графического объекта относительно осей координат. Именно в это время отрабатываются навыки в построении параболы. Но данные преобразования почти не переносятся на преобразования других графических объектов. Хотя есть два упражнения, которые соотносятся с заданиями, встречающимися в материалах ЕГЭ.

    На рисунке изображён график одной их функций . Какой именно?

    — Какой из трёх графиков, изображённых на рисунке, является графиком функции у = |х -2|

    Сделаны попытки преобразования графических объектов.

    — Какие преобразования надо выполнить, чтобы

    а) из графика функции у=х 3 получить графики функций у = — х 3 ; у = (х-3) 3 ; у = х 3 + 4.

    б) из графика функции у = получить графики функций у = — ;

    — Постройте в одной координатной плоскости графики функций у = | х|; у =|х -4| ; у = |х -4|-3.

    В учебнике 9 класса в главе «Целое уравнение и его корни» упоминается графический способ уравнений третьей и более высокой степени как один из способов наряду с разложением на множители.

    Поэтому: уже в 7 классе строим графики функций у = | х| — 3, у = 4 — | х|; у =|х +4|; у = | х — 3|.

    При построении параболы вводим первые преобразования:

    — построить графики функций у = х 2 +3; у=х 2 -5, где смещение по оси ординат. А затем у = (х+2) 2 ; у = (х-1) 2 . Конечно, не все ученики усваивают, впрочем, как и всё содержание материала. Для успешных учеников это не сложно. Тем более это только пропедевтика.

    В 8-м классе: Урок-практикум.

    Тема: «График функции у = . Графический способ решения иррациональных уравнений»

    Цель: отработать навыки в преобразовании графика функции у = , закрепить умения графически решать иррациональные уравнения.

    I. Фронтально

    1). Схематически в одной системе координат изобразить графики функций

    2). Решить уравнения

    II. Построить графики функций

    III. Решение уравнений

    X 2 -3 =

    В 8 классе строим преобразования гиперболы и графика функции у = .

    Упражнения взяты из «Сборника задач по алгебре 8-9 класса» М.Л.Галицкого, А.И.Звавича. Уже на факультативных занятиях или занятиях кружка решаем уравнения с параметром |х 2 -2х-3| = а. Определить, при каком а уравнение имеет три корня. Строим графики функций у = |х 2 -2х-3|; у = а. Получаем ответ а = 4.

    В 9 классе больше занимаемся исследованием квадратного трёхчлена. Формулы функций усложняю. Рассматриваем графики вида у = (х 2 -2) 2 — (х 2 -1) 2 ;

    Необычность конструкций, разрыв графиков, удаление точек вызывает некоторую удивлённость. Тем самым преодолевается стандартность мышления, развивается воображение, повышается интерес: а что ещё может получиться? В каких случаях?

    Уравнения, решаемые графическим способом.

    I. Решение уравнений Р(х) = 0, где Р(х) – многочлен степени большей 2.


    источники:

    http://www.math-solution.ru/math-task/exponential-equality

    http://urok.1sept.ru/articles/672912