Канонический вид уравнений квадратичных поверхностей

76. Приведение квадратичных форм к каноническому виду

Рассмотрим некоторое линейное преобразование А с матрицей .

Это симметрическое преобразование можно записать в виде:

Y1 = a11x1 + a12x2

Y2 = a12x1 + a22x2

Где у1 и у2 – координаты вектора в базисе .

Очевидно, что квадратичная форма может быть записана в виде

Ф(х1, х2) = х1у1 + х2у2.

Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение .

Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

.

При переходе к новому базису от переменных х1 и х2 мы переходим к переменным и . Тогда:

Тогда .

Выражение называется Каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.

Пример. Привести к каноническому виду квадратичную форму

Ф(х1, х2) = 27.

Коэффициенты: а11 = 27, а12 = 5, а22 = 3.

Составим характеристическое уравнение: ;

(27 — l)(3 — l) – 25 = 0

Пример. Привести к каноническому виду уравнение второго порядка:

17×2 + 12xy + 8y2 – 20 = 0.

Коэффициенты а11 = 17, а12 = 6, а22 = 8. А =

Составим характеристическое уравнение:

(17 — l)(8 — l) — 36 = 0

136 — 8l — 17l + l2 – 36 = 0

L2 — 25l + 100 = 0

Итого: — каноническое уравнение эллипса.

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 2, l2 = 6.

Найдем координаты собственных векторов:

Полагая m1 = 1, получим n1 =

Полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 1, l2 = 11.

Найдем координаты собственных векторов:

Полагая m1 = 1, получим n1 =

Полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

4ху + 3у2 + 16 = 0

Коэффициенты: a11 = 0; a12 = 2; a22 = 3.

Характеристическое уравнение:

Корни: l1 = -1, l2 = 4.

Для l1 = -1 Для l2 = 4

M1 = 1; n1 = -0,5; m2 = 1; n2 = 2;

= (1; -0,5) = (1; 2)

Получаем: — каноническое уравнение гиперболы.

При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая решает рассморенные выше примеры для любых начальных условий.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите коэффициенты квадратичной формы и нажмите Enter.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

Приведение кривой второго порядка к каноническому виду

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ1=-2, λ2=8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
x 2=(1,1); .
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 — 20 = 0.
Решение.Пример 2

Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение

Задание. Привести уравнение к каноническому виду: 16x 2 — 9y 2 -64x — 8y +199 = 0.
Решение.Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение

Квадратичные формы — определение и понятие с примерами решения

Содержание:

Первоначально теория квадратичных форм использовалась для исследования кривых и поверхностей, задаваемых уравнением второго порядка, содержащими две или три переменные, Позднее эта теория нашла и другие приложения. В частности, при математическом моделировании экономических процессов целевые функции могут содержать квадратичные слагаемые. Многочисленные приложения квадратичных форм потребовали построения общей теории, когда число переменных равно любому п, а коэффициенты квадратичной формы не всегда являются вещественными числами.

Понятие квадратичной формы

Квадратичной формой

Пример:

Сумма является квадратичной формой от трех неизвестных .

Каждую квадратичную форму можно записать в стандартном виде. Для этого сначала приводятся подобные в квадратичной форме, затем коэффициенты при обозначаются через а коэффициенты при через причем „ Член записывается в виде После этих преобразований квадратичную форму можно записать в виде:

Матрица: называется матрицей квадратичной формы F. Так как то А — симметричная матрица.

С учетом правила умножения матриц можно вывести матричную форму записи квадратичной формы.

где А — матрица квадратичной формы, X — матрица-столбец неизвестных:

Приведенные выкладки показывают, в частности, что если А -симметрическая матрица, то выражение является квадратичной формой от неизвестных ,т.е. квадратичная форма является

результатом скалярного произведения матриц X и АХ. Матричная форма записи квадратичной формы имеет вид . Если — произвольный n— мерный вектор, то после подстановки в квадратичную форму вместо X получится число , которое называется значением квадратичной формы F(X) на векторе .

Канонический базис квадратичной формы

Принято считать, что квадратичная форма F(X) имеет канонический вид, если все коэффициенты при произведениях различных переменных равны нулю, т.е. при . При этом квадратичная форма представляет собой сумму квадратов переменных с соответствующими коэффициентами ,т.е.:

В этом случае матрица квадратичной формы имеет диагональный вид:

Очевидно, что изучение свойств квадратичной формы, записанной в каноническом виде, значительно упрощается. В связи с этим возникает задача приведения произвольной квадратичной формы к каноническому виду. В основе многих известных методов приведения квадратичной формы к каноническому виду лежит следующая теорема.

Теорема. Всякая квадратичная форма с помощью невырожденного линейного преобразования может быть приведена к каноническому виду.

Метод ортогональной матрицы использует особенности собственных значений и собственных векторов симметрической матрицы.

Пусть дана квадратичная форма , Поскольку А -симметрическая матрица, для нее существует диагонализирующая ортогональная матрица S, такая что:

где -собственные значения матрицы А.

Применим к квадратичной форме линейное преобразование — матрица-столбец новых переменных — матрица, обратная к S.

Таким образом, квадратичную форму всегда можно представить в каноническом виде с коэффициентами, равными собственным значениям матрицы квадратичной формы.

Канонический вид квадратичной формы определяется неоднозначно. В то же время можно доказать, что все канонические формы, к которым приводится данная квадратичная форма, содержат одинаковое число отрицательных, положительных и нулевых коэффициентов при квадратах новых переменных.

Наиболее удобным для исследования является канонический вид, в котором коэффициенты при новых переменных равны +1 или -1, т.е. квадратичная форма имеет вид:

Такую запись называют нормальным видом квадратичной формы. В нем общее число квадратов равно рангу r квадратичной формы.

Квадратичная форма может быть приведена к нормальному виду многими различными преобразованиями. При этом справедлива следующая теорема.

Теорема, Число положительных и число отрицательных квадратов в нормальном виде, к которому приводится данная вещественная квадратичная форма вещественным невырожденным линейным преобразованием, не зависит от выбора этого преобразования.

Эту теорему называют законом инерции квадратичных форм.

Базис пространства R» называется каноническим базисом квадратичной формы , если в этом базисе квадратичная форма имеет канонический вид, т.е. при

Если канонический базис F(X), то выражение: называется каноническим видом F(X) в базисе где — новый набор неизвестных.

Теорема. Если — разложение вектора а по каноническому базису квадратичной формы то значение F(X) на векторе а вычисляется по формуле

Доказательство:

Эта теорема утверждает, что если известны канонический базис квадратичной формы F(X) и ее канонический вид в этом базисе, то для вычисления значения F(a) квадратичной формы F(X) на векторе а достаточно:

  1. разложить вектор а по каноническому базису :
  2. коэффициенты разложения подставить вместо неизвестных в канонический вид квадратичной формы:

Квадратичная форма имеет много разных канонических базисов. Процесс построения канонического базиса называется приведением квадратичной формы к сумме квадратов.

Наиболее часто используются: канонический базис из собственных векторов матрицы А и канонический базис Якоби.

Канонический базис из собственных векторов матрицы квадратичной формы

Теорема. Ортонормированный базис пространства Rсостоящий из собственных векторов симметрической матрицы , является каноническим базисом квадратичной формы , а выражение — ее каноническим видом в базисе ,

Доказательство:

  • , если так как -ортогональная система векторов =>,- канонический базис квадратичной формы F(X).
  • = так как векторы системы нормированы, то .

Канонический базис Якоби квадратичной формы . Будем говорить, что матрица удовлетворяет условию Якоби, если определители:

называемые угловыми минорами матрицы А, не равны нулю. Очевидно, что

Обозначим через матрицу:

Вычислим определитель этой матрицы, разлагая ее по последнему столбцу, затем также по последнему столбцу разложим полученный определитель и т.д. Из условия следует, что и, значит, каждая система уравнений , где вектор диагональной системы, имеет единственное решение . Система векторов называется системой векторов Якоби матрицы А, которая удовлетворяет условию Якоби.

Теорема. матрица А квадратичной формы удовлетворяет условию Якоби, система векторов Якоби матрицы А является каноническим базисом квадратичной формы , а выражение:

ее каноническим видом в базисе .

Положительно и отрицательно определенные квадратичные формы

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://math.semestr.ru/line/curve-canonica.php

http://www.evkova.org/kvadratichnyie-formyi