Каноническое уравнение эллиптического параболоида онлайн

Построение поверхности 3D

Результат

Примеры поверхностей

  • Эллиптический параболоид
  • Двухсторонний гиперболоид
  • Мнимый эллипсоид
  • Две параллельные плоскости
  • Тригонометрические функции

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(7)

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.

Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или (8)

из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h 0, q>0.

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение

(10)

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.

рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения

из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).

Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения

или

из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h 0 и h

Поверхности второго порядка. Поверхности вращения.

Поверхность S называется поверхностью вращения вокруг оси OZ, если для любой точки M0(x0,y0,z0)

этой поверхности окружность, проходящая через эту точку в плоскости z=z0 с центром в (0,0,z0) и радиусом

, целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).

Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением

F(x 2 +y 2 ,z)=0, то S — поверхность вращения вокруг оси OZ.

Эллипсоид:

Мнимый эллипсоид.

где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.

Свойства эллипсоида.

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что

2. Эллипсоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно координатных осей,
  • плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается

Однополостной гиперболоид.

Свойства однополостного гиперболоида.

1. Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что

2. Однополостной гиперболоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается

эллипс, а плоскостями, ортогональными осям Ox и Oyгипербола.

Двуполостной гиперболоид.

Свойства двуполостного гиперболоида.

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует,

что и неограничен сверху.

2. Двуполостный гиперболоид обладает

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при

получается эллипс, при – точка, а в сечении плоскостями, перпендикулярными осям

Ox и Oy, – гипербола.

Эллиптический параболоид.

В случае, если a=b≠0, перечисленные выше (эллипсоид, однополостной гиперболоид, двуполостной

гиперболоид, эллиптический параболоид) поверхности являются поверхностями вращения.

Эллиптический параболоид.

Свойства эллиптического параболоида.

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует,

что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает:

  • осевой симметрией относительно оси Oz,
  • плоскостной симметрией относительно координатных осей Oxz и Oyz.

3. В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а

плоскостями, ортогональными осям Ox и Oy – парабола.

Уравнение эллиптического параболоида имеет вид:

Если a=b, то эллиптический параболоид представляет собой поверхность вращения, образованную

вращением параболы, параметр которой , вокруг вертикальной оси, проходящей через

вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью z=z0>0 является эллипсом.

Пересечение эллиптического параболоида с плоскостью x=x0 или y=y0 является параболой.


источники:

http://poisk-ru.ru/s39807t17.html

http://www.calc.ru/Poverkhnosti-Vtorogo-Poryadka-Poverkhnosti-Vrashcheniya.html