Каноническое уравнение мнимых пересекающихся прямых

Исследование уравнений второго порядка

Преобразование координат в уравнении второго порядка.

В общей декартовой системе координат линия второго порядка может быть задана уравнением
$$
Ax^ <2>+ 2Bxy + Cy^ <2>+ 2Dx + 2Ey + F = 0,\label
$$
в котором коэффициенты \(A\), \(B\) и \(C\) не равны нулю одновременно. Исследуем множество точек, которые ему удовлетворяют, не предполагая заранее, что хоть одна такая точка существует. С этой целью мы будем менять систему координат так, чтобы уравнение стало возможно проще. С самого начала можно считать систему координат декартовой прямоугольной, так как при переходе к прямоугольной системе координат общий вид уравнения \eqref не изменится.

При повороте базиса декартовой прямоугольной системы координат на угол \(\varphi\) старые координаты точки \(x\), \(y\) будут связаны с ее новыми координатами \(x’\), \(y’\) формулами
$$
x = x’\cos \varphi-y’\sin \varphi,\\ y = x’\sin \varphi + y’\cos \varphi.\nonumber
$$
В новых координатах уравнение \eqref примет вид
$$
A(x’\cos \varphi-y’\sin \varphi)^ <2>+ 2B(x’\cos \varphi-y’\sin \varphi) \times \\ \times (x’\sin \varphi + y’\cos \varphi) + C(x’\sin \varphi + y’\cos \varphi) + … = 0.\nonumber
$$
Здесь многоточием обозначены члены первой степени относительно \(x’\), \(y’\) и свободный член, которые нет необходимости выписывать. Нас будет интересовать член с произведением \(x’y’\) в преобразованном уравнении. В невыписанные члены это произведение не входит, и мы подсчитаем, что половина коэффициента при \(x’y’\) есть
$$
B’ = -A\sin \varphi \cos \varphi + B(\cos^<2>\varphi-\sin^<2>\varphi) + C\sin \varphi \cos \varphi.\nonumber
$$
Если \(B = 0\), то поворачивать систему координат не будем. Если же \(B \neq 0\), то выберем угол \(\varphi\) так, чтобы \(B’\) обратилось в нуль.

Это требование приведет к уравнению
$$
2B \cos 2\varphi = (A-C)\sin 2\varphi.\label
$$
Если \(A = C\), то \(\cos 2\varphi = 0\), и можно положить \(\varphi = \pi/4\). Если же \(A \neq C\), то выбираем \(\varphi = \displaystyle\frac<1> <2>\operatorname \left[\frac<2B>\right]\). Для нас сейчас важно то, что хоть один такой угол обязательно существует. После поворота системы координат на этот угол линия будет иметь уравнение
$$
A’x’^ <\ 2>+ C’y’^ <\ 2>+ 2D’x’ + 2E’y’ + F’ = 0.\label
$$
Выражения для коэффициентов уравнения \eqref через коэффициенты \eqref подсчитать не трудно, но это не нужно. Теперь коэффициент при произведении переменных равен нулю, а остальные члены мы по-прежнему считаем произвольными.

Если в уравнение \eqref входит с ненулевым коэффициентом квадрат одной из координат, то при помощи переноса начала координат вдоль соответствующей оси можно обратить в нуль член с первой степенью этой координаты.

В самом деле, пусть, например, \(A’ \neq 0\). Перепишем \eqref в виде
$$
A’\left(x’^ <\ 2>+ \frac<2D’>x’ + \frac>>\right) + C’y’^ <\ 2>+ 2E’y’ + F’-\frac = 0.\nonumber
$$
Если мы сделаем перенос начала координат, определяемый формулами \(x″ = x’ + D’/A’\), \(y″ = y’\), то уравнение приведется к виду
$$
A’x″^ <\ 2>+ C’y″^ <\ 2>+ 2E’y″ + F″ = 0,\nonumber
$$
как и требовалось.

Канонические виды уравнений второго порядка.

Предположим, что \(A’C’ \neq 0\), то есть оба коэффициента отличны от нуля. Согласно утверждению 1 при помощи переноса начала координат уравнение приведется к виду
$$
A’x″^ <\ 2>+ C’y″^ <\ 2>+ F″ = 0.\label
$$

Могут быть сделаны следующие предположения относительно знаков коэффициентов в этом уравнении.

Случай A’C’ > 0.

Если \(A’C’ > 0\), то коэффициенты \(A’\) и \(C’\) имеют один знак. Для \(F″\) имеются следующие три возможности.

    Знак \(F″\) противоположен знаку \(A’\) и \(C’\). Перенесем \(F″\) в другую часть равенства и разделим на него. Уравнение примет вид
    $$
    \frac>> + \frac>> = 1,\label
    $$
    где \(a^ <2>= -F″/A’\), \(b^ <2>= -F″/C’\). Можно считать, что в этом уравнении \(a > 0\), \(b > 0\) и \(a \geq b\). Действительно, если последнее условие не выполнено, то можно сделать дополнительную замену координат
    $$
    x^ <*>= y″,\ y^ <*>= x″.\label
    $$

Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением \eqref при условии \(a \geq b\), называется эллипсом, уравнение называется каноническим уравнением эллипса, а система координат — его канонической системой координат.

При \(a = b\) уравнение \eqref есть уравнение окружности радиуса \(a\). Таким образом, окружность — частный случай эллипса.

  • Знак \(F″\) совпадает с общим знаком \(A″\) и \(C″\). Тогда аналогично предыдущему мы можем привести уравнение к виду
    $$
    \frac>> + \frac>> = -1,\label
    $$
    Этому уравнению не удовлетворяют координаты ни одной точки. Уравнение, которое приводится к каноническому виду \eqref, называется уравнением мнимого эллипса.
  • \(F″ = 0\). Уравнение имеет вид
    $$
    a^<2>x″^ <\ 2>+ c^<2>y″^ <\ 2>= 0.\label
    $$
    Ему удовлетворяет только одна точка \(x″ = 0\), \(y″ = 0\). Уравнение, приводящееся к каноническому виду \eqref, называется уравнением пары мнимых пересекающихся прямых. Основанием для этого названия служит сходство с приведенным ниже уравнением \eqref.
  • Случай A’C’ Определение.

    Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением \eqref, называется гиперболой, уравнение называется каноническим уравнением гиперболы, а система координат — ее канонической системой координат.

    Случай \(A’C’ = 0\).

    Допустим теперь, что \(A’C’ = 0\), и, следовательно, один из коэффициентов \(A’\) или \(C’\) равен нулю. В случае необходимости, делая замену \eqref, мы можем считать, что \(A’ = 0\). При этом \(C \neq 0\), так как иначе порядок уравнения был бы меньше двух. Используя утверждение 1, мы приведем уравнение к виду
    $$
    C’y″^ <\ 2>+ 2D’x″ + F″ = 0.\nonumber
    $$

    Пусть \(D’ \neq 0\). Сгруппируем члены следующим образом:
    $$
    C’y″^ <\ 2>+ 2D’\left(x″ + \frac<2D’>\right) = 0.\nonumber
    $$
    Перенесем начало координат вдоль оси абсцисс в соответствии с формулами перехода \(x^ <*>= x″ + F″/2D’\), \(y^ <*>= y″\). Тогда уравнение примет вид
    $$
    C″y^ <*2>+ 2D’x^ <*>= 0,\nonumber
    $$
    или
    $$
    y^ <*2>= 2px^<*>,\label
    $$
    где \(p = -D’/C″\). Мы можем считать, что \(p > 0\), так как в противном случае можно сделать дополнительную замену координат, изменяющую направление оси абсцисс: \(\tilde = -x^<*>\), \(\tilde = y^<*>\).

    Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением \eqref при условии \(p > 0\), называется параболой, уравнение называется каноническим уравнением параболы, а система координат — ее канонической системой координат.

    Допустим, что \(D’ = 0\). Уравнение имеет вид \(C’y″^ <\ 2>+ F″ = 0\). Относительно \(F″\) есть следующие три возможности.

    1. Если \(C’F″ 0\) знаки \(C’\) и \(F″\) совпадают. Разделив на \(C’\), приведем уравнение к виду
      $$
      y″^ <\ 2>+ a^ <2>= 0.\label
      $$
      Этому уравнению не удовлетворяют координаты ни одной точки. Уравнение, приводящееся к каноническому виду \eqref, называют уравнением пары мнимых параллельных прямых.
    2. Остался последний случай \(F″ = 0\). После деления на \(C’\) уравнение принимает вид
      $$
      y″^ <\ 2>= 0.\label
      $$
      Это уравнение эквивалентно уравнению \(y″ = 0\), и потому определяет прямую линию. Уравнение, приводящееся к каноническому виду \eqref, называется уравнением пары совпавших прямых.

    Теперь мы можем объединить всё вместе.

    Пусть в декартовой системе координат задано уравнение второго порядка \eqref.

    Тогда существует такая декартова прямоугольная система координат, в которой это уравнение принимает один из следующих девяти канонических видов:

    1. Уравнение эллипса.
      $$
      \frac>> + \frac>> = 1;\nonumber
      $$
    2. Мнимый эллипс. Данному уравнению не удовлетворяет ни одна точка.
      $$
      \frac>> + \frac>> = -1;\nonumber
      $$
    3. Уравнение пары мнимых пересекающихся прямых (точка).
      $$
      a^<2>x^ <2>+ c^<2>y^ <2>= 0;\nonumber
      $$
    4. Уравнение гиперболы.
      $$
      \frac>>-\frac>> = 1;\nonumber
      $$
    5. Пересекающиеся прямые.
      $$
      a^<2>x^<2>-c^<2>y^ <2>= 0;\nonumber
      $$
    6. Уравнение параболы.
      $$
      y^ <2>= 2px;\nonumber
      $$
    7. Пара параллельных прямых.
      $$
      y^<2>-a^ <2>= 0;\nonumber
      $$
    8. Пара мнимых параллельных прямых. Данному уравнению не удовлетворяет ни одна точка.
      $$
      y^ <2>+ a^ <2>= 0;\nonumber
      $$
    9. Прямая (пара совпавших прямых).
      $$
      y^ <2>= 0.\nonumber
      $$

    Кривые второго порядка. Канонический вид уравнений второго порядка.

    Кривая второго порядка — геометрическое место точек на плоскости, прямоугольные координаты

    которых удовлетворяют уравнению вида:

    в котором, по крайней мере один из коэффициентов a11, a12, a22 не равен нулю.

    Инварианты кривых второго порядка.

    Вид кривой зависим от 4 инвариантов, приведенных ниже:

    — инварианты относительно поворота и сдвига системы координат:

    — инвариант относительно поворота системы координат (полуинвариант):

    Для изучения кривых второго порядка рассматриваем произведение А*С.

    Общее уравнение кривой второго порядка выглядит так:

    Ax 2 +2Bxy+Cy 2 +2Dx+2Ey+F=0

    — Если А*С > 0, то уравнение принимает вид уравнения эллиптического типа. Любое эллиптическое

    уравнение – это уравнение или обычного эллипса, или же вырожденного эллипса (точки), или мнимого

    эллипса (в таком случае уравнение не определяет на плоскости ни одного геометрического образа);

    уравнение выражает или простую гиперболу, или вырожденную гиперболу (две пересекающиеся прямые);

    — Если А*С = 0, то линия второго порядка не будет центральной. Уравнения такого типа называют

    уравнениями параболического типа и выражают на плоскости или простую параболу, или 2 параллельных

    (либо совпадающих) прямых, или не выражают на плоскости ни одного геометрического образа;

    — Если А*С ≠ 0, кривая второго порядка будет центральной;

    Таким образом, виды кривых второго порядка:

    Канонический вид уравнений второго порядка.

    Вводя новую систему координат можно привести уравнения кривых второго порядка к стандартному

    каноническому виду. Характеристики канонических уравнений очень легко выражаются через инварианты

    Δ, D, I и корни характеристического уравнения .


    источники:

    http://www.calc.ru/1478.html