Каноническое уравнение окружности в пространстве

Уравнение окружности

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

Так как |СМ| = \( \sqrt <(x — a)^2 + (у — b)^2>\), то уравнение (1) можно записать так:

(x — a) 2 + (у — b) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

Уравнение (3) называют каноническим уравнением окружности.

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

Задача 4. Доказать, что уравнение

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

Напишем уравнение прямой АВ:

или 4х + 3y —5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

Напишем уравнение искомой окружности

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

Понятие об уравнении линии на плоскости и в пространстве. Уравнение окружности.

Уравнением линии на плоскости в декартовой системе координат называют уравнение: F(х;у)=0, которому удовлетворяют координаты (х;у) любой точки этой линии и не удовлетворяют координаты ни одной точки, которые не принадлежат ей.

Линия в пространстве задаётся в общем случае как линия пересечения некоторых поверхностей S1 и S2 .

называется уравнением линии в пространстве.

Окружностью называется линия, каждая точка М(х;у) на которой находится на одинаковом расстоянии от заданной точки , называемойцентром окружности. Величина называется радиусом окружности.

В прямоугольной системе координат уравнение окружности имеет вид

,

где (a; b) — координаты её центра, — радиус окружности.

В частности, если центр окружности совпадает с началом координат, т.е. a=0 , b=0 , то уравнение окружности примет вид:

Уравнение прямой. Различные виды уравнений прямой.

Общее уравнение прямой:

1.

, (2)

где — постоянные коэффициенты, причём и одновременно не обращаются в нуль .

Частные случаи этого уравнения:

— прямая проходит через начало координат;

— прямая параллельна оси ;

— прямая параллельна оси ;

— прямая совпадает с осью ;

— прямая совпадает с осью .

Нахождение углов между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.

Если в пространстве заданы направляющий вектор прямой L

и уравнение плоскости

Ax + By + Cz + D = 0,

то угол между этой прямой и плоскостью можно найти используя формулу

sinφ =| A · l + B · m + C · n |
√A 2 + B 2 + C 2 · √l 2 + m 2 + n 2

Условия параллельности двух прямых:

а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:

б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.

Условия перпендикулярности двух прямых:

а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.

Это условие может быть записано также в виде

б) Если уравнения прямых заданы в общем виде (6), то условие их перпендикулярности (необходимое и достаточное) заключается в выполнении равенства

Уравнение прямой в пространстве: параметрические и канонические.

Если прямая проходит через две точки A(x1, y1, z1) и B(x2, y2, z2), такие что x1 ≠ x2, y1 ≠ y2 и z1 ≠ z2, то уравнение прямой можно найти используя следующую формулу

x — x1=y — y1=z — z1
x2 — x1y2 — y1z2 — z1

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x0
y = m t + y0
z = n t + z0

где (x0, y0, z0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки A(x0, y0, z0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x0=y — y0=z — z0
lmn

Уравнения плоскости.

Уравнение плоскости в прямоугольной системе координат Oxyz в трехмерном пространстве – это уравнение с тремя переменными x, y и z, которому удовлетворяют координаты любой точки заданной плоскости и не удовлетворяют координаты точек, лежащих вне данной плоскости.

Таким образом, уравнение плоскости обращается в тождество при подстановке в него координат любой точки плоскости. Если в уравнение плоскости подставить координаты точки, не лежащей в этой плоскости, то оно обратится в неверное равенство.

Всякое уравнение вида , где A, B, C и D – некоторые действительные числа, причем А, В и C одновременно не равны нулю, определяет плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве, и всякая плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве может быть задана уравнением вида .

Уравнение называется общим уравнением плоскости в пространстве. Если не придавать числам А, В, С и D конкретных значений, то общее уравнение плоскости называют уравнением плоскости в общем виде.

ОБЩЕЕ УРАВНЕНИЕ ЛИНИЙ ВТОРОГО ПОРЯДКА

Линии второго порядка

1. Основные понятия.

6. Общее уравнение линий второго порядка.

ОСНОВНЫЕ ПОНЯТИЯ

Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат

.

Коэффициенты уравнения – действительные числа, но, по крайней мере, одно из чисел отлично от нуля. Такие линии называются линиями (кривыми) второго порядка.

ОКРУЖНОСТЬ

Простейшей кривой второго порядка является окружность.

Определение. Окружностью радиуса R с центром в точке называется множество всех точек плоскости, удовлетворяющих условию .

Каноническое уравнение окружности .

Эллипс

Определение. Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная и большая, чем расстояние между фокусами.

Каноническое уравнение эллипса .

у

с – половина расстояния между фокусами; a – большая полуось; b – малая полуось.

и называются фокальными радиусами. ,

Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением:

Определение.Характеристикой эллипса, показывающей меру его вытянутости, является эксцентриситет – величина, определяемая отношением: .

Замечание. Для эллипса .

Определение.Прямые называются директрисами эллипса.

Теорема. Если ­­– расстояние от произвольной точки эллипса до какого-нибудь фокуса, – расстояние от этой же точки до соответствующей этому фокусы директрисы, то отношение есть постоянная величина, равная эксцентриситету эллипса: .

Замечание. Если a = b, то c = 0, а значит, фокусы сливаются, и эллипс превращается в окружность.

Если же , то уравнение определяет эллипс, большая ось которого лежит на оси Оу, а малая ось – на оси Ох. Фокусы такого эллипса находятся в точках F1 (0;с); F2(0;-с), где b 2 = a 2 + c 2 .

Пример. Составьте уравнение эллипса, если его фокусы F1(0; 0), F2(1; 1), а большая ось равна 2.

Уравнение эллипса имеет вид: .

Расстояние между фокусами: 2c = , таким образом,

a 2 – b 2 = c 2 = .

По условию большая ось равна 2, то есть 2а = 2, откуда получаем, что

а = 1, b = .

Тогда искомое уравнение эллипса имеет вид: .

Гипербола

Определение. Гиперболойназывается линия, для всех точек которой модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы .

y

Теорема. Фокусное расстояние и полуоси гиперболы связаны соотношением:

Ось 2а называется действительной осью гиперболы.

Ось 2b называется мнимой осью гиперболы.

Прямоугольник со сторонами 2а и2b называется основным прямоугольником гиперболы.

Гипербола имеет две асимптоты, уравнения которых

Замечание.Для гиперболы эксцентриситет .

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/ε от него, называются директрисами гиперболы. Их уравнения: .

Определение. Гипербола называется равносторонней, если ее полуоси равны ( ).

Ее каноническое уравнение .

Определение. Эксцентриситетом гиперболы называется отношение расстояние между фокусами к величине действительной оси гиперболы, обозначается : .

Кривая, определяемая уравнением , также есть гипербола, действительная ось которой расположена на оси , а мнимая ось – на оси .

Гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.

Пример. Составьте уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса, заданного уравнением

Найдем фокусное расстояние для эллипса:

Тогда искомое уравнение гиперболы .

Парабола

Определение. Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

Каноническое уравнение параболы y 2 = 2px .

у


источники:

http://megalektsii.ru/s41911t7.html

http://poisk-ru.ru/s7872t3.html