Каноническое уравнение свойства и рисунок эллиптического параболоида

Свойства поверхностей второго порядка

СВОЙСТВА ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА

В данном приложении будут рассмотрены основные свойства поверхностей этих типов.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида

, называется эллипсоидом.

1°. Эллипсоид — ограниченная поверхность, поскольку из его канонического уравнения следует, что .

2°. Эллипсоид обладает:

— центральной симметрией относительно начала координат;

— осевой симметрией относительно координатных осей;

— плоскостной симметрией относительно координатных плоскостей.

3°. В сечении эллипсоида плоскостью, ортогональной любой из осей координат, получается эллипс. Например, рассматривая секущую плоскость , где , получаем следующее уравнение линии сечения

,

являющейся эллипсом. (Рис.1.)

z

Рисунок 1.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется эллиптическим параболоидом.

Свойства эллиптического параболоида:

1°. Эллиптический параболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что и принимает сколь угодно большие значения.

2°. Эллиптический параболоид обладает

— осевой симметрией относительно оси ;

— плоскостной симметрией относительно координатных плоскостей и .

3°. В сечении эллиптического параболоида плоскостью, ортогональной оси , получается эллипс, а плоскостями, ортогональными осям или парабола. Например, рассматривая секущую плоскость , получаем следующее уравнение плоской линии

,

являющейся эллипсом. (Рис.2.) С другой стороны, сечение плоскостью приводит к уравнению линии

,

являющейся параболой. Для случая сечения плоскостью уравнение сечения имеет аналогичный вид.

.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется гиперболическим параболоидом.

Свойства гиперболического параболоида:

1°. Гиперболический параболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что — любое.

2°. Гиперболический параболоид обладает

— осевой симметрией относительно оси ;

— плоскостной симметрией относительно координатных плоскостей и .

3°. В сечении гиперболического параболоида плоскостью, ортогональной оси координат , получается гипербола, а плоскостями ортогональными осям или — парабола. (Рис. 3)

Например, рассматривая секущую плоскость z=z0>0 , получаем следующее уравнение линии сечения

,

являющейся гиперболой. При уравнение гиперболы будет иметь вид:

.

Рисунок 3.

С другой стороны, при сечении гиперболического параболоида плоскостью x=x0 получаем плоскую кривую , являющуюся параболой. Для случая сечения плоскостью уравнение аналогично и имеет вид .

Из полученных уравнений следует, что гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.

4°. Гиперболический параболоид имеет два семейства прямолинейных образующих.

Если записать уравнение данной поверхности в виде , то можно прийти к заключению, что при любых значениях параметра a точки, лежащие на прямых и , также принадлежат и гиперболическому параболоиду, поскольку почленное перемножение уравнений плоскостей, задающих эти прямые, дает уравнение гиперболического параболоида.

Заметим, что для каждой точки гиперболического параболоида, существует пара прямых, проходящих через эту точку и целиком лежащих на гиперболическом параболоиде. Уравнения этих прямых могут быть получены (с точностью до некоторого общего ненулевого множителя) путем подбора конкретных значений параметра a.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется однополостным гиперболоидом.

Свойства однополостного гиперболоида:

1°. Однополостный гиперболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что .

2°. Однополостный гиперболоид обладает

— центральной симметрией относительно начала координат;

— осевой симметрией относительно всех координатных осей;

— плоскостной симметрией относительно всех координатных плоскостей.

3°. В сечении однополостного гиперболоида плоскостью, ортогональной оси координат , получается эллипс, а плоскостями, ортогональными осям или гипербола. (Рис.4) Вывод уравнений для линий сечения аналогичен рассмотренным ранее случаям.

4°. Однополостный гиперболоид имеет два семейства прямолинейных образующих. Записав уравнение данной поверхности в виде , можно прийти к заключению, что при любых a и b, точки, лежащие на прямых

и ,

будут принадлежать и однополостному гиперболоиду, поскольку почленное перемножение уравнений плоскостей, задающих эти прямые, дает уравнение однополостного гиперболоида.

Для каждой точки однополостного гиперболоида существует пара прямых, проходящих через эту точку и целиком лежащих на однополостном гиперболоиде. Уравнения этих прямых могут быть получены путем подбора конкретных значений a и b.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется двуполостным гиперболоидом.

Свойства двуполостного гиперболоида:

1°. Двуполостный гиперболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что и не ограничен сверху.

z

2°. Двуполостный гиперболоид обладает:

— центральной симметрией относительно начала координат;

— осевой симметрией относительно всех координатных осей;

— симметрией относительно всех координатных плоскостей.

3°. В сечении двуполостного гиперболоида плоскостью, ортогональной оси координат , при получается эллипс, а плоскостями, ортогональными осям или гипербола. (Рис. 5)

Пусть некоторая кривая, расположенная в плоскости , имеет уравнение . Если вращать эту кривую вокруг оси , то каждая ее точка будет описывать окружность.

Совокупность точек, координаты которых удовлетворяют уравнению , называется поверхностью вращения.

К поверхностям вращения, например, относятся:

1°. Эллипсоид вращения

.

2°. Конус вращения

.

Замечание: поверхности вращения линии второго порядка не всегда задаются уравнениями второго порядка.

Например, если вращать квадратную параболу вокруг оси , получается эллиптический параболоид вращения, однако при вращении этой же кривой вокруг оси получится поверхность вращения, задаваемая уравнением вида или .

Составить уравнение поверхности вращения, получаемой при вращении линии вокруг оси .

Решение. Зафиксируем на вращаемой линии точку с координатами . Линия, получаемая при вращении этой точки вокруг оси в плоскости , есть окружность радиуса , с уравнением .

С другой стороны, , поэтому . Наконец, в силу произвольности точки , выбранной на линии вращения, получаем, что уравнение поверхности вращения — эллиптического параболоида есть .

Параболоиды: определение, виды, сечения

Определение параболоида

Эллиптическим параболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

Гиперболическим параболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

В уравнениях (4.51) и (4.52) и — положительные параметры, характеризующие параболоиды, причем для эллиптического параболоида .

Начало координат называют вершиной каждого из параболоидов ((4.50) или (4.51)).

Плоские сечения эллиптического параболоида

Плоскость пересекает эллиптический параболоид (4.51) по линии, имеющей в этой плоскости уравнение , которое равносильно уравнению параболы с фокальным параметром . Сечение параболоида плоскостью получаем, подставляя в уравнение (4.51): . Это уравнение равносильно уравнению параболы с фокальным параметром . Эти сечения называются главными параболами эллиптического параболоида (4.51).

Рассмотрим теперь сечение эллиптического параболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.51), получаем

При уравнение не имеет действительных решений, т.е. плоскость при не пересекает параболоид (4.51). При уравнению (4.51) удовлетворяет одна вещественная точка — вершина параболоида. При 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» /> уравнение определяет эллипс с полуосями . Следовательно, сечение эллиптического параболоида плоскостью (при 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» />) представляет собой эллипс, центр которого лежит на оси аппликат, а вершины — на главных параболах.

Таким образом, эллиптический параболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных параболах (рис.4.46,а).

Параболоид вращения

Эллиптический параболоид, у которого , называется параболоидом вращения . Такой параболоид является поверхностью вращения. Сечения параболоида вращения плоскостями (при 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» />), представляют собой окружности с центрами на оси аппликат (рис.4.46,б). Его можно получить, вращая вокруг оси параболу , где .

Плоские сечения гиперболического параболоида

Сечения гиперболического параболоида координатными плоскостями и представляют собой параболы (главные параболы) или с параметрами или соответственно. Поскольку оси симметрии главных парабол направлены в противоположные стороны, гиперболический параболоид называют седловой поверхностью .

Рассмотрим теперь сечения гиперболического параболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.52), получаем При 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» /> уравнение равносильно уравнению гиперболы полуосями , то есть сечение гиперболического параболоида плоскостью при 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQBAMAAACigOGCAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQSHbWqHAiDGxccHwESbMsvAAAADOSURBVBjTY2DACURTMcUkQITKSwxx51ILIMn4Cl2c6SHDmgsMDOwvINx2BZgEqwEDXwEDA5sBhMuYCpPhSWDgAwryhUwrgMhkCkAk7iUwcD9gYJA7xfgEIsARBpGRS2BgA0rULeB9DrM12AFJYg8DyxO4e4pBMnIbwEa9ZGB/BJPgBUvobWBgfgDyBrMBqlF8G0CuAnqjbwFEhikaYjkn0B8BIG/UqYDdyzgN6lzGFwx+CiA5ncgLYA82wKzyWW4C1A9kgL3cqoAILJcLDADGbCyGJ0mAtgAAAABJRU5ErkJggg==» /> представляет собой гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе . При получаем уравнение сопряженной гиперболы с полуосями , т.е. сечение гиперболического параболоида плоскостью при представляет собой сопряженную гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе . При получаем уравнение пересекающихся прямых , т.е. сечение гиперболического параболоида плоскостью представляет собой пару пересекающихся в начале координат прямых.

Таким образом, гиперболический параболоид можно представить как поверхность, образованную гиперболами (включая и «крест» из их асимптот), вершины которых лежат на главных параболах (рис.4.47,а).

Сечение параболоида плоскостью , где — произвольная постоянная, представляет собой параболу

равную главной параболе с параметром , вершина которой лежит на другой главной параболе с параметром . Поэтому гиперболический параболоид можно представить как поверхность, получающуюся при перемещении одной главной параболы так, чтобы ее вершина «скользила» по другой главной параболе (рис.4.47,б).

1. Гиперболический параболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (рис.4.47,в).

2. Ось аппликат канонической системы координат является осью симметрии параболоида, а координатные плоскости — плоскостями симметрии параболоида.

В самом деле, если точка принадлежит параболоиду (эллиптическому или гиперболическому), то точки с координатами при любом выборе знаков также принадлежат параболоиду, поскольку их координаты удовлетворяют уравнению (4.51) или (4.52) соответственно. Поэтому параболоид симметричен относительно координатных плоскостей и координатной оси .

Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(7)

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.

Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или (8)

из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h 0, q>0.

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение

(10)

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.

рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения

из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).

Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения

или

из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h 0 и h


источники:

http://mathhelpplanet.com/static.php?p=paraboloid

http://poisk-ru.ru/s39807t17.html