Кинематические уравнения равнопеременного вращательного движения твердого тела

Теоретическая механика:
Вращательное движение твердого тела

Смотрите также решения задач по теме «Вращательное движение» в онлайн решебниках Яблонского, Мещерского, Чертова (с примерами и методичкой для заочников), Иродова и Савельева.

При поступательном движении тела (§ 60 в учебнике Е. М. Никитина) все его точки движутся по одинаковым траекториям и в каждый данный момент они имеют равные скорости и равные ускорения.

Поэтому поступательное движение тела задают движением какой-либо одной точки, обычно движением центра тяжести.

Рассматривая в какой-либо задаче движение автомобиля (задача 147) или тепловоза (задача 141), фактически рассматриваем движение их центров тяжести.

Вращательное движение тела (Е. М. Никитин, § 61) нельзя отождествить с движением какой-либо одной его точки. Ось любого вращающегося тела (маховика дизеля, ротора электродвигателя, шпинделя станка, лопастей вентилятора и т. п.) в процессе движения занимает в пространстве относительно окружающих неподвижных тел одно и то же место.

Движение материальной точки или поступательное движение тела характеризуют в зависимости от времени линейные величины s (путь, расстояние), v (скорость) и а (ускорение) с его составляющими at и an.

Вращательное движение тела в зависимости от времени t характеризуют угловые величины : φ (угол поворота в радианах), ω (угловая скорость в рад/сек) и ε (угловое ускорение в рад/сек 2 ).

Закон вращательного движения тела выражается уравнением
φ = f (t).

Угловая скорость – величина, характеризующая быстроту вращения тела, определяется в общем случае как производная угла поворота по времени
ω = dφ/dt = f’ (t).

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости, определяется как производная угловой скорости
ε = dω/dt = f» (t).

Приступая к решению задач на вращательное движение тела, необходимо иметь в виду, что в технических расчетах и задачах, как правило, угловое перемещение выражается не в радианах φ, а в оборотах φоб.

Поэтому необходимо уметь переходить от числа оборотов к радианному измерению углового перемещения и наоборот.

Так как один полный оборот соответствует 2π рад, то
φ = 2πφоб и φоб = φ/(2π).

Угловая скорость в технических расчетах очень часто измеряется в оборотах, произведенных в одну минуту (об/мин), поэтому необходимо отчетливо уяснить, что ω рад/сек и n об/мин выражают одно и то же понятие – скорость вращения тела (угловую скорость), но в различных единицах – в рад/сек или в об/мин.

Переход от одних единиц угловой скорости к другим производится по формулам
ω = πn/30 и n = 30ω/π.

При вращательном движении тела все его точки движутся по окружностям, центры которых расположены на одной неподвижной прямой (ось вращающегося тела). Очень важно при решении задач, приведенных в этой главе, ясно представлять зависимость между угловыми величинами φ, ω и ε, характеризующими вращательное движение тела, и линейными величинами s, v, at и an, характеризующими движение различных точек этого тела (рис 205).

Если R – расстояние от геометрической оси вращающегося тела до какой-либо точки А (на рис. 205 R=OA), то зависимость между φ – углом поворота тела и s – расстоянием, пройденным точкой тела за то же время, выражается так:
s = φR.

Зависимость между угловой скоростью тела и скоростью точки в каждый данный момент выражается равенством
v = ωR.

Касательное ускорение точки зависит от углового ускорения и определяется формулой
at = εR.

Нормальное ускорение точки зависит от угловой скорости тела и определяется зависимостью
an = ω 2 R.

При решении задачи, приведенной в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности – совершает криволинейное движение.

§ 33. Равномерное вращательное движение

Если угловая скорость ω=const, то вращательное движение называется равномерным.

Уравнение равномерного вращения имеет вид
φ = φ0 + ωt.

В частном случае, когда начальный угол поворота φ0=0,
φ = ωt.

Угловую скорость равномерно вращающегося тела
ω = φ/t
можно выразить и так:
ω = 2π/T,
где T – период вращения тела; φ=2π – угол поворота за один период.

§ 34. Равнопеременное вращательное движение

Вращательное движение с переменной угловой скоростью называется неравномерным (см. ниже § 35). Если же угловое ускорение ε=const, то вращательное движение называется равнопеременным . Таким образом, равнопеременное вращение тела – частный случай неравномерного вращательного движения.

Уравнение равнопеременного вращения
(1) φ = φ0 + ω0t + εt 2 /2
и уравнение, выражающее угловую скорость тела в любой момент времени,
(2) ω = ω0 + εt
представляют совокупность основных формул вращательного равнопеременного движения тела.

В эти формулы входят всего шесть величин: три постоянных для данной задачи φ0, ω0 и ε и три переменных φ, ω и t. Следовательно, в условии каждой задачи на равнопеременное вращение должно содержаться не менее четырех заданных величин.

Для удобства решения некоторых задач из уравнений (1) и (2) можно получить еще две вспомогательные формулы.

Исключим из (1) и (2) угловое ускорение ε:
(3) φ = φ0 + (ω + ω0)t/2.

Исключим из (1) и (2) время t:
(4) φ = φ0 + (ω 2 — ω0 2 )/(2ε).

В частном случае равноускоренного вращения, начавшегося из состояния покоя, φ0=0 и ω0=0. Поэтому приведенные выше основные и вспомогательные формулы принимают такой вид:
(5) φ = εt 2 /2;
(6) ω = εt;
(7) φ = ωt/2;
(8) φ = ω 2 /(2ε).

§ 35. Неравномерное вращательное движение

Рассмотрим пример решения задачи, в которой задано неравномерное вращательное движение тела.

iSopromat.ru

Вращательное движение твердого тела – это движение, при котором тело имеет как минимум две неподвижные точки (рисунок 1.3). Прямая, проходящая через эти точки, называется осью вращения.

Положение тела определено, если задан угол φ между плоскостями П0 и П, одна из которых неподвижна, а другая жестко связана с телом.

φ=φ(t) – уравнение вращательного движения твердого тела.

За положительное направление отсчета принимается вращение против хода часовой стрелки, если смотреть навстречу положительному направлению оси z.

Траекториями точек тела при его вращении вокруг неподвижной оси являются окружности, расположенные в плоскостях, перпендикулярных оси вращения.

Для характеристики изменения угла поворота с течением времени вводится величина, называемая угловой скоростью ω:

В технике угловая скорость – это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернется на угол 2 π ⋅ n , где n – число оборотов в минуту (об/мин). Разделив этот угол на число секунд в минуте, получим

Вектор угловой скорости – это вектор, направленный по оси вращения в ту сторону, откуда вращение видно происходящим против хода часовой стрелки, с модулем, равным модулю алгебраической угловой скорости

где k – единичный вектор оси вращения.

Угловое ускорение – мера изменения угловой скорости:

Вектор углового ускорения – производная вектора угловой скорости по времени (рис. 1.4)

  1. Если ε >0 и ω >0 (рисунок 1.4), то угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов ω и ε совпадают, оба они направлены в положительную сторону оси вращения Oz.
  2. При ε ω – тело вращается ускоренно в отрицательную сторону. Направление векторов ω и ε совпадают, оба они направлены в отрицательную сторону оси вращения Oz.
  3. Если ε ω >0 , то имеем замедленное вращение в положительную сторону. Векторы ω и ε направлены в противоположные стороны.
  4. Если ε >0 при
    ω , то имеем замедленное вращение в отрицательную сторону. Векторы ω и ε направлены в противоположные стороны.
  5. Если угловая скорость ω=const , то вращательное движение называется равномерным. Уравнение равномерного вращения

Если угловое ускорение ε=const, то вращательное движение называется равнопеременным.
Уравнение равнопеременного вращения и уравнение, выражающее угловую скорость в любой момент времени

представляют совокупность основных формул вращательного равнопеременного движения тела.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ И ТВЕРДОГО ТЕЛА

Краткая теория

Положение материальной точки или твердого тела при заданной оси вращения определяется углом поворота или угловым перемещением , которое направлено вдоль оси, вокруг которой вращается тело, в сторону, определяемую правилом правого винта (рис. 2.1). Направление вектора поворота связывают с направлением вращения тела. Следовательно, является не истинным вектором, а псевдовектором.

Средняя угловая скорость и среднее угловое ускорение материальной точки

, (2.1)

где — изменение угла поворота за интервал времени .

Мгновенная угловая скорость материальной точки

. (2.2)

Мгновенное угловое ускорение

. (2.3)

Направление векторов угловой скорости и углового ускорения совпадают с осью вращения (рис.2.1). Угловая скорость, угловое ускорение, как и угловое перемещение, являются псевдовекторами.

Частота вращения

(2.4)

где — число оборотов, совершаемых телом за время ; — период вращения (время одного полного оборота).

Число оборотов N, совершаемых телом при вращательном движении, связано с углом поворота φ соотношением:

УРАВНЕНИЯ ОСНОВНЫХ ВИДОВ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Кинематическое уравнение равномерного вращательного движения

, (2.6)

где — начальное угловое перемещение; — время. При равномерном вращении

Кинематическое уравнение равнопеременного вращательного движения ( )

, (2.7)

где — начальная угловая скорость.

Угловая скорость тела при равнопеременном вращательном движении

. (2.8)

СВЯЗЬ МЕЖДУ ЛИНЕЙНЫМИ И УГЛОВЫМИ ВЕЛИЧИНАМИ, ХАРАКТЕРИЗУЮЩИМИ ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ

Длина пути, пройденного материальной точкой по дуге окружности радиусом при повороте на угол Δφ (рис.2.1)

. (2.9)

Связь между линейной и угловой скоростью(рис.2.2)

; . (2.10)

Связь между тангенциальным и угловым ускорением(рис.2.2)

. (2.11)

Связь между нормальным ускорением и угловой скоростью

(2.12)

КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯКИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ
, при , при
, при , при
, при , при

Вопросы для самоподготовки

1. Сформулируйте определение вращательного движения твердого тела.

2. Назовите основные кинематические характеристики вращательного движения, дайте им определение.

3. Объясните, почему линейное перемещение, скорость и ускорение не являются характеристиками вращательного движения твердого тела.

4. Дайте определение периода и частоты вращения.

5. Выведите кинематические уравнения равномерного и равнопеременного вращательного движения.

6. Выведите уравнение угловой скорости при равнопеременном вращательном движении.

7. Назовите формулы связи кинематических характеристик поступательного и вращательного движения.

8. Покажите аналогию между основными характеристиками поступательного и вращательного движения.

9. Материальная точка М движется по окружности со скоростью . На рисунке показан график зависимости проекции скорости vτ от времени ( — единичный вектор положительного направления, vτ – проекция на это направление). Как при этом меняется величина нормального an и тангенциального aτ ускорения материальной точки?

Примеры решения задач

2.1.Материальная точка начинает двигаться по окружности радиуса r=10 см с постоянным касательным ускорением aτ=0,4 см/с 2 . Найти:

1) момент времени t от начала вращения, при котором вектор полного ускорения образует с вектором скорости угол β=45 0 ;

2) путь, пройденный материальной точкой за это время;

3) угол поворота материальной точки по окружности за это время.

1. По условию задачи материальная точка движется по окружности с постоянным касательным ускорением . Следовательно, мгновенную скорость движущейся точки при v0=0 можно найти по формуле (1.25), откуда

.

Скорость v и нормальное ускорение an=v 2 /r непрерывно возрастают со временем, а вектор полного ускорения со временем изменяется как по модулю, так и по направлению. Так как векторы и в данный момент времени всегда одинаково направлены, то угол β между векторами и зависит от соотношения между нормальным an и касательным aτ ускорениями:

.

Тогда искомый момент времени найдем из соотношения:

.

2. В соответствии с формулой (1.22) путь, пройденный материальной точкой за это время

.

3. Угол поворота φ при вращательном движении линейно зависит от пройденного пути по формуле (2.9) и также изменяется со временем по квадратичному закону. Тогда угол поворота материальной точки в момент времени t=5c равен:

φ .

Ответ: 1. ; 2. ; 3. φ .

2.2. Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением , где — постоянный вектор, — угол поворота из начального положения. Найти угловую скорость тела в зависимости от угла .

. .

Выберем положительное направление оси z вдоль вектора . Согласно формуле (2.3), . Представив dt по формуле (2.2) как , можно преобразовать предыдущее уравнение к виду

. (1)

Проинтегрируем выражение (1) с учетом начального условия ( , ):

;

.

.

Ответ: .

2.3. Круглый конус с радиусом основания R и высотой h катится без скольжения по поверхности стола, как показано на рисунке 2.5. Вершина конуса закреплена шарнирно в точке О на уровне точки С – центра основания конуса. Точка С движется с постоянной скоростью v. Найти угловую скорость .

R, .

1. За промежуток времени dt цилиндр совершит поворот d вокруг оси ОC и одновременно поворот d вокруг оси ОО / . Суммарный поворот . Поделив обе части этого равенства на dt, получим

, (1)

где и — угловые скорости вращения вокруг осей ОО / и ОС соответственно. Модули векторов и можно найти, используя выражение (2.10): ,

тогда , . (2)

Рис.2.5 к примеру решения задач № 2.3

Их отношение . Модуль вектора можно найти по теореме Пифагора, используя выражения (2):

.

Ответ: .


источники:

http://isopromat.ru/teormeh/kratkaja-teoria/vrasatelnoe-dvizenie-tverdogo-tela

http://lektsii.org/3-85540.html