Кинематическое уравнение движения законы движения

Кинематика

Механика — это раздел физики, изучающий механическое движение тел.

Кинематика — это раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих это движение.

Материальная точка — тело, обладающее массой, размерами которого в данной задаче можно пренебречь, если

  • расстояние, которое проходит тело, много больше его размера;
  • расстояние от данного тела до другого тела много больше его размера;
  • тело движется поступательно.

Система отсчета — это тело отсчета, связанная с ним система координат и прибор для измерения времени.
Траектория — это линия, которую описывает тело при своем движении.
Путь — это скалярная величина, равная длине траектории.
Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением за данный промежуток времени.

Важно!
В процессе движения путь может только увеличиваться, а перемещение как увеличиваться, так и уменьшаться, например, когда тело поворачивает обратно.
При прямолинейном движении в одном направлении путь равен модулю перемещения, а при криволинейном — путь больше перемещения.
Перемещение на замкнутой траектории равно нулю.

Основная задача механики — определить положение тела в пространстве в любой момент времени.

Механическое движение и его виды

Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.

Механическое движение может быть:
1. по характеру движения

  • поступательным — это движение, при котором все точки тела движутся одинаково и любая прямая, мысленно проведенная в теле, остается параллельна сама себе;
  • вращательным — это движение, при котором все точки твердого тела движутся по окружностям, расположенным в параллельных плоскостях;
  • колебательным — это движение, которое повторяется в двух взаимно противоположных направлениях;

2. по виду траектории

  • прямолинейным — это движение, траектория которого прямая линия;
  • криволинейным — это движение, траектория которого кривая линия;
  • равномерным — движение, при котором скорость тела с течением времени не изменяется;
  • неравномерным — это движение, при котором скорость тела с течением времени изменяется;
  • равноускоренным — это движение, при котором скорость тела увеличивается с течением времени на одну и ту же величину;
  • равнозамедленным — это движение, при котором скорость тела уменьшается с течением времени на одну и ту же величину.

Относительность механического движения

Относительность движения — это зависимость характеристик механического движения от выбора системы отсчета.

Правило сложения перемещений

Перемещение тела относительно неподвижной системы отсчета равно векторной сумме перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы отсчета относительно неподвижной системы отсчета:

где ​ \( S \) ​ — перемещение тела относительно неподвижной системы отсчета;
​ \( S_1 \) ​ — перемещение тела относительно подвижной системы отсчета;
​ \( S_2 \) ​ — перемещение подвижной системы отсчета относительно неподвижной системы отсчета.

Правило сложения скоростей

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета:

где ​ \( v \) ​ — скорость тела относительно неподвижной системы отсчета;
​ \( v_1 \) ​ — скорость тела относительно подвижной системы отсчета;
​ \( v_2 \) ​ — скорость подвижной системы отсчета относительно неподвижной системы отсчета.

Относительная скорость

Важно! Чтобы определить скорость одного тела относительно другого, надо мысленно остановить то тело, которое мы принимаем за тело отсчета, а к скорости оставшегося тела прибавить скорость остановленного, изменив направление его скорости на противоположное.

Пусть \( v_1 \) — скорость первого тела, а \( v_2 \) — скорость второго тела.
Определим скорость первого тела относительно второго \( v_ <12>\) :

Определим скорость второго тела относительно первого \( v_ <21>\) :

Следует помнить, что траектория движения тела и пройденный путь тоже относительны.

Если скорости направлены перпендикулярно друг к другу, то относительная скорость рассчитывается по теореме Пифагора:

Если скорости направлены под углом ​ \( \alpha \) ​ друг к другу, то относительная скорость рассчитывается по теореме косинусов:

Скорость

Скорость — это векторная величина, характеризующая изменение перемещения данного тела относительно тела отсчета с течением времени.

Обозначение — ​ \( v \) ​, единицы измерения — ​м/с (км/ч)​.

Средняя скорость — это векторная величина, равная отношению всего перемещения к промежутку времени, за которое это перемещение произошло:

Средняя путевая скорость — это скалярная величина, равная отношению всего пути, пройденного телом, к промежутку времени, за которое этот путь пройден:

Важно! Чтобы определить среднюю скорость на всем участке пути, надо время разделить на отдельные промежутки и все время представить в виде суммы этих промежутков.
Чтобы определить среднюю скорость за все время движения, надо путь разделить на отдельные участки и весь путь представить как сумму этих участков.

Мгновенная скорость — это скорость тела в данный момент времени или в данной точке траектории.
Мгновенная скорость направлена по касательной к траектории движения.

Ускорение

Ускорение – это векторная физическая величина, характеризующая быстроту изменения скорости.

Обозначение — ​ \( a \) ​, единица измерения — м/с 2 .
В векторном виде:

где ​ \( v \) ​ – конечная скорость; ​ \( v_0 \) ​ – начальная скорость;
​ \( t \) ​ – промежуток времени, за который произошло изменение скорости.

В проекциях на ось ОХ:

где ​ \( a_n \) ​ – нормальное ускорение, ​ \( a_ <\tau>\) ​ – тангенциальное ускорение.

Тангенциальное ускорение сонаправлено с вектором линейной скорости, а значит, направлено вдоль касательной к кривой:

Нормальное ускорение перпендикулярно направлению вектора линейной скорости, а значит, и касательной к кривой:

Ускорение характеризует быстроту изменения скорости, а скорость – векторная величина, которая имеет модуль (числовое значение) и направление.

Важно!
Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение характеризует быстроту изменения направления скорости.
Если \( a_ <\tau>\) ≠ 0, \( a_n \) = 0, то тело движется по прямой;
если \( a_ <\tau>\) = 0, \( a_n \) = 0, ​ \( v \) ​ ≠ 0, то тело движется равномерно по прямой;
если \( a_ <\tau>\) = 0, \( a_n \) ≠ 0, тело движется равномерно по кривой;
если \( a_ <\tau>\) = 0, \( a_n \) = const, то тело движется равномерно по окружности;
если \( a_ <\tau>\) ≠ 0, \( a_n \) ≠ 0, то тело движется неравномерно по окружности.

Равномерное движение

Равномерное движение – это движение, при котором тело за любые равные промежутки времени совершает равные перемещения.

Скорость при равномерном движении – величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло:

Проекция вектора скорости на ось ОХ:

Проекция вектора скорости на координатную ось равна быстроте изменения данной координаты:

График скорости (проекции скорости)

График скорости (проекции скорости) представляет собой зависимость скорости от времени:

График скорости при равномерном движении – прямая, параллельная оси времени.
График 1 лежит над осью ​ \( t \) ​, тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью ​ \( t \) ​, тело движется против оси ОХ.

Перемещение при равномерном движении – это величина, равная произведению скорости на время:

Проекция вектора перемещения на ось ОХ:

График перемещения (проекции перемещения)

График перемещения (проекции перемещения) представляет собой зависимость перемещения от времени:

График перемещения при равномерном движении – прямая, выходящая из начала координат.
График 1 лежит над осью \( t \) , тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью \( t \) , тело движется против оси ОХ.

По графику зависимости скорости от времени можно определить перемещение, пройденное телом за время \( t \) . Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Координата тела при равномерном движении рассчитывается по формуле:

График координаты представляет собой зависимость координаты от времени: ​ \( x=x(t) \) ​.

График координаты при равномерном движении – прямая.
График 1 направлен вверх, тело движется по направлению оси ОХ:

График 2 параллелен оси ОХ, тело покоится.
График 3 направлен вниз, тело движется против оси ОХ:

Прямолинейное равноускоренное движение

Прямолинейное равноускоренное движение – это движение по прямой, при котором тело движется с постоянным ускорением:

При движении с ускорением скорость может как увеличиваться, так и уменьшаться.

Скорость тела при равноускоренном движении рассчитывается по формуле:

При разгоне (в проекциях на ось ОХ):

При торможении (в проекциях на ось ОХ):

График ускорения (проекции ускорения) при равноускоренном движении представляет собой зависимость ускорения от времени:

График ускорения при равноускоренном движении – прямая, параллельная оси времени.
График 1 лежит над осью t, тело разгоняется, ​ \( a_x \) ​ > 0.
График 2 лежит под осью t, тело тормозит, \( a_x \) \( v_ <0x>\) ​ > 0, ​ \( a_x \) ​ > 0.

График 2 направлен вниз, тело движется равнозамедленно в положительном направлении оси ОХ, \( v_ <0x>\) > 0, \( a_x \) \( v_ <0x>\) \( a_x \) \( t_2-t_1 \) ​. Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Перемещение при равноускоренном движении рассчитывается по формулам:

Перемещение в ​ \( n \) ​-ую секунду при равноускоренном движении рассчитывается по формуле:

Координата тела при равноускоренном движении рассчитывается по формуле:

Свободное падение (ускорение свободного падения)

Свободное падение – это движение тела в безвоздушном пространстве под действием только силы тяжести.

Все тела при свободном падении независимо от массы падают с одинаковым ускорением, называемым ускорением свободного падения.
Ускорение свободного падения всегда направлено к центру Земли (вертикально вниз).

Обозначение – ​ \( g \) ​, единицы измерения – м/с 2 .

Важно! \( g \) = 9,8 м/с 2 , но при решении задач считается, что \( g \) = 10 м/с 2 .

Движение тела по вертикали

Тело падает вниз, вектор скорости направлен в одну сторону с вектором ускорения свободного падения:

Если тело падает вниз без начальной скорости, то ​ \( v_0 \) ​ = 0.
Время падения рассчитывается по формуле:

Тело брошено вверх:

Если брошенное вверх тело достигло максимальной высоты, то ​ \( v \) ​ = 0.
Время подъема рассчитывается по формуле:

Движение тела, брошенного горизонтально

Движение тела, брошенного горизонтально, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали со скоростью ​ \( v_0=v_ <0x>\) ​;
  2. равноускоренного движения по вертикали с ускорением свободного падения ​ \( g \) ​ и без начальной скорости ​ \( v_<0y>=0 \) ​.

Скорость тела в любой момент времени:

Угол между вектором скорости и осью ОХ:

Движение тела, брошенного под углом к горизонту (баллистическое движение)

Движение тела, брошенного под углом к горизонту, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали;
  2. равноускоренного движения по вертикали с ускорением свободного падения.

Скорость тела в любой момент времени:

Угол между вектором скорости и осью ОХ:

Время подъема на максимальную высоту:

Максимальная высота подъема:

Максимальная дальность полета:

Важно!
При движении вверх вертикальная составляющая скорости будет уменьшаться, т. е. тело вдоль вертикальной оси движется равнозамедленно.
При движении вниз вертикальная составляющая скорости будет увеличиваться, т. е. тело вдоль вертикальной оси движется равноускоренно.
Скорость ​ \( v_0 \) ​, с которой тело брошено с Земли, будет равна скорости, с которой оно упадет на Землю. Угол ​ \( \alpha \) ​, под которым тело брошено, будет равен углу, под которым оно упадет.

При решении задач на движение тела, брошенного под углом к горизонту, важно помнить, что в точке максимального подъема проекция скорости на ось ОУ равна нулю:

Это облегчает решение задач:

Движение по окружности с постоянной по модулю скоростью

Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения.

Траектория движения – окружность. Вектор скорости направлен по касательной к окружности.
Модуль скорости тела с течением времени не изменяется, а ее направление при движении по окружности в каждой точке изменяется, поэтому движение по окружности – это движение с ускорением.
Ускорение, которое изменяет направление скорости, называется центростремительным.
Центростремительное ускорение направлено по радиусу окружности к ее центру.

Центростремительное ускорение – это ускорение, характеризующее быстроту изменения направления вектора линейной скорости.
Обозначение – ​ \( a_ <цс>\) ​, единицы измерения – ​м/с 2​ .

Движение тела по окружности с постоянной по модулю скоростью является периодическим движением, т. е. его координата повторяется через равные промежутки времени.
Период – это время, за которое тело совершает один полный оборот.
Обозначение – ​ \( T \) ​, единицы измерения – с.

где ​ \( N \) ​ – количество оборотов, ​ \( t \) ​ – время, за которое эти обороты совершены.
Частота вращения – это число оборотов за единицу времени.
Обозначение – ​ \( \nu \) ​, единицы измерения – с –1 (Гц).

Период и частота – взаимно обратные величины:

Линейная скорость – это скорость, с которой тело движется по окружности.
Обозначение – ​ \( v \) ​, единицы измерения – м/с.
Линейная скорость направлена по касательной к окружности:

Угловая скорость – это физическая величина, равная отношению угла поворота к времени, за которое поворот произошел.
Обозначение – ​ \( \omega \) ​, единицы измерения – рад/с .

Направление угловой скорости можно определить по правилу правого винта (буравчика).
Если вращательное движение винта совпадает с направлением движения тела по окружности, то поступательное движение винта совпадает с направлением угловой скорости.
Связь различных величин, характеризующих движение по окружности с постоянной по модулю скоростью:

Важно!
При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, т. к. радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра они располагаются:

Если рассматривать равномерное движение двух сцепленных тел, то в этом случае одинаковыми будут линейные скорости, а угловые скорости тел будут различны в зависимости от радиуса тела:

Когда колесо катится равномерно по дороге, двигаясь относительно нее с линейной скоростью ​ \( v_1 \) ​, и все точки обода колеса движутся относительно его центра с такой же линейной скоростью \( v_1 \) , то относительно дороги мгновенная скорость разных точек колеса различна.

Мгновенная скорость нижней точки ​ \( (m) \) ​ равна нулю, мгновенная скорость в верхней точке ​ \( (n) \) ​ равна удвоенной скорости ​ \( v_1 \) ​, мгновенная скорость точки ​ \( (p) \) ​, лежащей на горизонтальном радиусе, рассчитывается по теореме Пифагора, а мгновенная скорость в любой другой точке ​ \( (c) \) ​ – по теореме косинусов.

Кинематика Основные понятия, законы и формулы

Основные понятия, законы и формулы.

Кинематика — раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих движение.

Механическим движением называют изменение положения тела в пространстве с течением времени относительно других тел.

Простейшим механическим движением является движение материальной точки — тела, размеры и форму которого можно не учитывать при описании его движения.

Движение материальной точки характеризуют траекторией, длиной пути, перемещением, скоростью и ускорением.

Траекторией называют линию в пространстве, описываемую точкой при своем движении.

Расстояние, пройденное телом вдоль траектории движения, — путь(S).

Перемещение — направленный отрезок, соединяющий начальное и конечное положение тела.

Длина пути — величина скалярная, перемещение — величина векторная.

Средняя скорость — это физическая величена, равная отношению вектора перемещения к промежутку времени, за которое произошло перемещение:

.

Мгновенная скорость или скорость в данной точке траектории — это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Dt:

.

Величину характеризующую изменение скорости за единицу времени, называют средним ускорением :

.

Аналогично понятию мгновенной скорости вводится понятие мгновенного ускорения:

.

При равноускоренном движении ускорение постоянно.

Простейший вид механического движения-прямолинейное движение точки с постоянным ускорением.

Движение с постоянным ускорением называется равнопеременным; в этом случае:

; ; .

Частным случаем прямолинейного движения с постоянным ускорением является падение тел с небольшой высоты (много меньшей радиуса Земли).

; ; .

Простейшим видом криволинейного движения является равномерное движение точки по окружности:

; ;

где и .

Связь между линейными и угловыми величинами при вращательном движении:

; ; ; .

Любое сложное движение можно рассматривать как результат сложения простых движений. Результирующее перемещение равно геометрической сумме и находится по правилу сложения векторов. Скорость тела и скорость системы отсчета так же складывается векторно.

, .

При решении задач на те или иные разделы курса, кроме общих правил решения, приходится учитывать некоторые дополнения к ним, связанные со спецификой самих разделов.

Задачи по кинематике, разбираемые в курсе элементарной физики, включают в себя: задачи о равнопеременном прямолинейном движении одной или нескольких точек, задачи о криволинейном движении точки на плоскости. Мы рассмотрим каждый из этих типов задач отдельно.

Прочитав условие задачи, нужно сделать схематический чертеж, на котором следует изобразить систему отсчета, и указать траекторию движения точки.

После того как выполнен чертеж, с помощью формул:

; ; .

устанавливают связь между величинами, отмеченными на чертеже.

Cоставив полную систему кинематических уравнений, описывающих движение точки, нужно записать в виде вспомогательных уравнений все дополнительные условия задачи.

Проверив число неизвестных в полученной системе уравнений, можно приступать к ее решению относительно искомых величин.

Решение задач о движении одних тел относительно других, которые в свою очередь двигаются относительно тела, принятого за неподвижное (чаще всего его связывают с Землей), начинают с выбора системы отсчета.

Для этого необходимо тщательно продумать условие задачи и выяснить, к какой системе относятся заданные и искомые характеристики движения.

Затем нужно установить подвижную и неподвижную системы отсчета, для движущихся тел указать кинематические характеристики относительного и переносного движений и составить уравнения движения отдельно для подвижной и неподвижной систем отсчета.

Составляя эти уравнения, необходимо следить за тем, чтобы начало отсчета времени было одинаковым для всех движущихся тел. Связь между абсолютным, переносным и относительным движениями задается формулами:

; .

Подстановкой в них развёрнутых выражений для Sn, S0, vn, v0 и т. д. и заканчивается первая часть решения.

Пример 1. Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью v1 = 12 км/ч далее половину оставшегося времени он ехал со скоростью v2 = 6 км/ч, а затем до конца пути шел пешком со скоростью v3 = 4 км/ч. Определить среднюю скорость велосипедиста на всем пути.

а) Эта задача на равномерное прямолинейное движение одного тела. Представляем ввиде схемы. При составлении ее изображаем траекторию движения и выбираем на ней начало отсчета (точка 0). Весь путь разбиваем на три отрезка S1,S2, S3, на каждом из них указываем скорости v1, v2, v3 и отмечаем время движения t1, t2, t3.

S = S1 + S2 + S3, t = t1 + t2 + t3.

б) Составляем уравнения движения для каждого отрезка пути:

S1 = v1t1; S2 = v2t2; S3 = v3t3 и записываем дополнительные условия задачи:

S1 = S2 + S3; t2 = t3; .

в) Читаем еще раз условие задачи, выписываем числовые значения известных величин и, определив число неизвестных в полученной системе уравнений (их 7: S1, S2, S3, t1, t2, t3, vср), решаем ее относительно искомой величины vср.

Если при решении задачи полностью учтены все условия, но в составленных уравнениях число неизвестных получается больше числа уравнений, это означает, что при последующих вычислениях одно из неизвестных сократится, такой случай имеет место и в данной задаче.

Решение системы относительно средней скорости дает:

.

г) Подставив числовые значения в расчётную формулу, получим:

; vср 7 км/ч.

Напоминаем, что числовые значения удобнее подставлять в окончательную расчетную формулу, минуя все промежуточные. Это экономит время на решение задачи и предотвращает дополнительные ошибки в расчётах.

Решая задачи на движение тел, брошенных вертикально вверх, нужно обратить особое внимание на следующее. Уравнения скорости и перемещения для тела, брошенного вертикально вверх, дают общую зависимость v и h от t для всего времени движения тела. Они справедливы (со знаком минус) не только для замедленного подъема вверх, но и для дальнейшего равноускоренного падения тела, поскольку движение тела после мгновенной остановки в верхней точке траектории происходит с прежним ускоронием. Под h при этом всегда подразумевают перемещение движущейся точки по вертикали, то есть ее координату в данный момент времени — расстояние от начала отсчета движения до точки.

Если тело брошено вертикально вверх со скоростью V0, то время tпод и высота hmax его подъема равны :

; .

Кроме того, время падения этого тела в исходную точку равно времени подъема на максимальную высоту (tпад = tпод), а скорость падения равна начальной скорости бросания (vпад = v0).

Пример 2. Тело брошено вертикально вверх с начальной скоростью v0 = 3,13 м/с. Когда оно достигло верхней точки полета, из того же начального пункта с такой же начальной скоростью бросили второе тело. Определите, на каком расстоянии от точки бросания встретятся тела; сопротивление воздуха не учитывать.

Решение. Делаем чертеж. Отмечаем на нем траекторию движения первого и второго тела. Выбрав начало отсчета в точке, указываем начальную скорость тел v0, высоту h, на которой произошла встреча (координату y=h), и время t1 и t2 движения каждого тела до момента встречи.

Уравнение перемещения тела, брошенного вверх, позволяет найти координату движущегося тела для любого момента времени независимо от того, поднимается ли тело вверх или падает после подъема вниз, поэтому для первого тела

,

.

Третье уравнение составляем, исходя из условия, что второе тело бросили позднее первого на время максимального подъема:

.

Решая систему трех уравнений относительно h, получаем:

; ; .

б) В задачах на криволинейное движение точки можно выделить задачи о движении точки по окружности и задачи о движении тел, брошенных под углом к горизонту.

Решение задач о движении точки по окружности принципиально ничем не отличается от решения задач о прямолинейном движении. Особенность состоит лишь в том, что здесь наряду с общими формулами кинематики приходится учитывать связь между угловыми и линейными характеристиками движения.

; ,

где и ; ; ; .

Движение тел, брошенных под углом к горизонту, можно рассматривать как результат наложения двух одновременных прямолинейных движений по осям OX и ОУ, направленных вдоль поверхности Земли и по нормали к ней. Учитывая это, решение всех задач такого типа удобно начинать с разложения вектора скорости и ускорения по указанным осям и затем составлять кинематические уравнения движения для каждого направления. Необходимо при этом иметь ввиду, что тело, брошенное под углом к горизонту, при отсутствии сопротивления воздуха и небольшой начальной скорости летит по параболе, и время движения по оси ОХ равно времени движения по оси ОУ, поскольку оба эти движения происходят одновременно.

Пример 3. Артиллерийское орудие расположено на горе высотой h. Снаряд вылетает из ствола со скоростью v0, направленной под углом a к горизонту. Пренебрегая сопротивлением воздуха, определите:

а) дальность полета снаряда по горизонтальному направлению ;

б) скорость снаряда в момент падения ;

г)начальный угол стрельбы, при котором дальность полета наибольшая.

Прямоугольную систему координат выбираем так, чтобы ее начало совпало с точкой бросания, а оси были направлены вдоль поверхности Земли и по нормали к ней в сторону начального смещения снаряда. Изображаем траекторию снаряда, его начальную скорость , угол бросания a, высоту h, горизонтальное перемещение S, скорость в момент падения (она направлена по касательной к траектории в точке падения) и угол падения j (углом падения тела называют угол между касательной к траектории, проведенной в точку падения, и нормалью к поверхности Земли).

Движение тела, брошенного под углом к горизонту, можно представить как результат сложения двух прямолинейных движений: одного-вдоль поверхности Земли (оно будет равномерным, поскольку сопротивление воздуха не учитывается) и второго-перпендикулярно поверхности Земли (в данном случае это будет движение тела, брошенного вертикально вверх). Для замены сложного движения двумя простыми разложим (по правилу параллелограмма) скорости и на горизонтальные и вертикальные составляющие и найдем их проекций и — для скорости и vx и vy — для скорости .

а, б) Составляем уравнение скорости и перемещения для их проекций по каждому направлению. Так как в горизонтальном направлении снаряд летит равномерно, то его скорость и координаты в любой момент времени удовлетворяют уравнениям

(1)

и . (2)

Для вертикального направления:

(3)

и . (4)

В момент времени t1, когда снаряд упадет на землю, его координаты равны:

(5)

В последнем уравнении перемещение h взято со знаком «минус», так как за время движения снаряд сместится относительно уровня отсчета 0 высоты в сторону противоположную направлению, принятому за положительное.

Результирующая скорость в момент падения равна :

. (6)

В составленной системе уравнений пять неизвестных, нам нужно определить S и v.

Из уравнений (4) и (5) находим время полета снаряда :

.

Подставляя выражения для t1 формулы (2) и (3) с учетом (5), соответственно получаем:

; (7)

. (8)

После этого из (6) с учетом (1) и (8) находим:

. (9)

Из полученных результатов можно сделать следующие выводы.

Если h = 0, то есть снаряды падают на уровне вылета, то согласно формуле (7) дальность их полета будет равна :

.

Если при этом угол бросания равен 45град (sin 2a = 1), то при заданной начальной скорости v0 дальность полета наибольшая:

.

Подставив в выражение (9) значение h = 0, получим, что скорость снаряда в момент его полета к уровню, с которого был произведен выстрел, равна его начальной скорости: v = v0.

При отсутствии сопротивления воздуха, скрость падения тел равна начальной скорости бросания независимо от того, под каким углом было брошено тело, лишь бы точки бросания и падения находились на одном уровне. Учитывая, что горизонтальная составляющая скорости с течением времени не изменяется, легко установить, что в момент падения скорость тела образует с горизонтом такой же угол, как и в момент бросания.

д) Решая уровнения (2), (4) и (5) относительно начального угла бросания a получим:

. (10)

Поскольку угол бросания не может быть мнимым, то это выражение имеет физический смысл лишь при условии, что

,

то есть,

откуда следует, что максимальное перемещение снаряда по горизонтальному направлению равно:

.

Подставляя выражение для S = Smax в формулу (10), получим для угла a, при котором дальность полета наибольшая:

.

Тема 1.6. Основные понятия кинематики

§1. Кинематика точки. Введение в кинематику.

Кинематикой (от греческого «кинема» — движение) называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил.

Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.

Механическое движение — это изменение положения тел (или частей тела) относительно друг друга в пространстве с течением времени.

Для определения положения движущегося тела (или точки) в разные моменты времени с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, образующую вместе с этим телом систему отсчета.

Тело отсчета — тело (или группа тел), принимаемое в данном случае за неподвижное, относительно которого рассматривается движение других тел.

Система отсчета — это система координат, связанная с телом отсчета, и выбранный способ измерения времени (рис. 1).

Рис.1. Система отчета

Изображать систему отсчета будем в виде трех координатных осей (не показывая тело, с которым они связаны).

Движение тел совершается в пространстве с течением времени. Пространство в механике мы рассматриваем, как трехмерное евклидово пространство.

Время является скалярной, непрерывно изменяющейся величиной. В задачах кинематики время t принимают за независимое переменное (аргумент). Все другие переменные величины (расстояния, скорости и т. д.) рассматриваются как изменяющиеся с течением времени, т.е. как функции времени t.

Для решения задач кинематики надо, чтобы изучаемое движение было как-то задано (описано).

Кинематически задать движение или закон движения тела (точки) — значит задать положение этого тела (точки) относительно данной системы отсчета в любой момент времени.

Основная задача кинематики точки твердого тела состоит в том, чтобы, зная закон движения точки (тела), установить методы определения всех кинематических величин, характеризующих дан­ное движение.

Положение тела можно определить с помощью радиус-вектора или с помощью координат.

Радиус-вектор точки М — направленный отрезок прямой, соединяющий начало отсчета О с точкой М (рис. 2).

Координата х точки М — это проекция конца радиуса-вектора точки М на ось Ох. Обычно пользуются прямоугольной системой координат Декарта. В этом случае положение точки М на линии, плоскости и в пространстве определяют соответственно одним (х), двумя (х, у) и тремя (х, у, z) числами — координатами (рис. 3).

Рис.2. Радиус-вектор

Рис.3. Координаты точки М

Материальная точка — тело, размерами которого в данных условиях можно пренебречь.

Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или когда тело движется поступательно.

Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движе­нии все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.

В дальнейшем под словом «тело» будем понимать «материальная точка».

Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией. Вид траектории зависит от выбора системы отсчета.

В зависимости от вида траектории различают прямолинейное и криволинейное движение.

Путь s — скалярная физическая величина, определяемая длиной траектории, описанной телом за некоторый промежуток времени. Путь всегда положителен: s> 0.Единицы измерения в системе СИ: м (метр).

Перемещение тела за определенный промежуток времени — направленный отрезок прямой, соединяющий начальное (точка М0) и конечное (точка М) положение тела (см. рис. 2):

где и — радиус-векторы тела в эти моменты времени.Единицы измерения в системе СИ: м (метр).

Проекция перемещения на ось Ох: ∆rx =∆х = х-х0, где x0 и x — координаты тела в начальный и конечный моменты времени.

Модуль перемещения не может быть больше пути: ≤s.

Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.

Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:

Видео-урок «Механическое движение»

§2. Способы задания движения точки

Для задания движения точки можно применять один из следую­щих трех способов:

1) векторный, 2) координатный, 3) естественный.

1. Векторный способ задания движения точки.

Пусть точка М движется по отношению к некоторой си­стеме отсчета Oxyz. Положение этой точки в любой момент времени можно определить, задав ее радиус-вектор , проведенный из на­чала координат О в точку М (рис. 4).

Рис.4. Движение точки М

При движении точки М вектор будет с течением времени изме­няться и по модулю, и по направлению. Следовательно, является переменным вектором (вектором-функцией), зависящим от аргу­мента t:

Равенство определяет закон движения точки в векторной форме, так как оно позволяет в любой момент времени построить соответствующий вектор и найти положение движущейся точки.

Геометрическое место концов вектора , т.е. годограф этого вектора, определяет траекторию движущейся точки.

2. Координатный способ задания движе­ния точки.

Положение точки можно непосредственно опре­делять ее декартовыми координатами х, у, z (рис.4), которые при движении точки будут с течением времени изменяться. Чтобы знать закон дви­жения точки, т.е. ее положение в пространстве в любой момент вре­мени, надо знать значения координат точки для каждого момента времени, т.е. знать зависимости

Уравнения представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.

3. Естественный способ задания движе­ния точки.

Рис.5. Движение точки М

Естественным способом задания движения удобно пользоваться в тех слу­чаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ явля­ется траекторией точки М при ее движении относительно системы отсчета Oxyz (рис.5) Выберем на этой траектории какую-нибудь неподвижную точку О’, которую примем за начало отсчета, и установим на траектории положительное и отрицатель­ное направления отсчета (как на координат­ной оси).

Тогда положение точки М на тра­ектории будет однозначно определяться криволинейной коорди­натой s, которая равна расстоянию от точки О’ до точки М, изме­ренному вдоль дуги траектории и взятому с соответствующим знаком. При движении точка М перемещается в положения M1, М2. . следовательно, расстояние s будет с течением времени изменяться.

Чтобы знать положение точки М на траектории в любой момент времени, надо знать зависимость s=f(t).

§3. Вектор скорости точки

Одной из основных кинематических характеристик движе­ния точки является векторная величина, называемая скоростью точки. Понятие скорости точки в равномерном прямолинейном движении относится к числу элементарных понятий.

Скорость — мера механического состояния тела. Она характеризует быстроту изменения положения тела относительно данной системы отсчета и является векторной физической величиной.

Единица измерения скорости – м/с. Часто используют и другие единицы, например, км/ч: 1 км/час=1/3,6 м/с.

Движение точки называется равномерным, если приращения радиуса-вектора точки за одинаковые промежутки времени равны между собой. Если при этом траекторией точки является прямая, то движение точки называется прямолинейным.

Для равномерно-прямолинейного движения ∆r=v∆t, где v – постоянный вектор скорости.

Из соотношения видно, что скорость прямолинейного и равномерного движения является физической величиной, определяющей перемещение точки за единицу времени.


источники:

http://pandia.ru/text/78/108/6702.php

http://www.sites.google.com/site/tehmehprimizt/lekcii/teoreticeskaa-mehanika/kinematika/osnovnye-ponatia-kinematiki