Кинематическое уравнение равнопеременного вращения имеет вид

Равнопеременное вращательное движение в теоретической механике

Равнопеременное вращательное движение:

Вращательное движение с переменной угловой скоростью называется неравномерным. Если же угловое ускорение

и уравнение, выражающее угловую скорость тела в любой момент времени,


представляют совокупность основных формул вращательного равнопеременного движения тела.

В эти формулы входят всего шесть величин: три постоянных для данной задачи и и три переменных Следовательно, в условии каждой задачи на равнопеременное вращение должно содержаться не менее четырех заданных величин.

Для удобства решения некоторых задач из уравнений (1) и (2) можно получить еще две вспомогательные формулы.

Исключим из (1) и (2) угловое ускорение

Исключим из (1) и (2) время t:

В частном случае равноускоренного вращения, начавшегося из состояния покоя, Поэтому приведенные выше основные и вспомогательные формулы принимают такой вид:

Задача №1

Маховик, вращающийся с угловой скоростью = 90 об/мин, с некоторого момента начинает вращаться равноускоренно и через 1,5 мин достигает угловой скорости = — 150 об/мин. Определить угловое ускорение маховика. Сколько всего оборотов делает маховик за 1,5 мин? Какую скорость имеют точки на цилиндрической поверхности маховика через 45 сек после начала равноускоренного движения, если диаметр маховика 1,2 м?

Решение 1. Все угловые величины выражаем в радианном измерении.

1. Если =90 об/мин, то

если =150 об/мин, то

2. Из уравнения (2) находим угловое ускорение, учитывая, что изменение угловой скорости от происходит за t=1,5 мин = 90 сек:

3. Определяем из формулы (3) угол поворота тела за t = 1,5 мин = 90 сек, принимая

4. Находим, какому числу оборотов соответствует этот угол поворота:

Следовательно, за время равноускоренного вращения маховик успеет совершить 180 оборотов.

5. Прежде чем найти по формуле

скорость точек на ободе маховика в момент времени t=45 сек после начала равноускоренного вращения, необходимо найти угловую скорость маховика в этот момент:

Зная, что получаем

Решение 2—угловые величины выражаются в оборотах, а время — в сек (t=1,5 мин — 90 сек).

1. Выражаем данные угловые скорости в об/сек.

2. Представим формулу (3) в ином виде, приняв
Тогда

3. Обозначив —угловое ускорение, выраженное через обороты, формулу (2) можно представить в виде

4. Найдем — угловую скорость маховика через = 45 сек после начала равноускоренного вращения:

Теперь находим при этой угловой скорости маховика скорость точек на его ободе:

Если же выражено в об/сек, то

Задачу можно решить и не переводя заданное время из минут в секунды, т. е. решить при заданных числовых величинах

Этот вариант решения рекомендуем выполнить самостоятельно

Задача №2

Вал, вращающийся равноускоренно из состояния покоя, в первые 12 сек совершает 95,5 оборота. С каким угловым ускорением вращается вал и какую угловую скорость он приобретает?

1. Угловое перемещение за время t=12 сек равноускоренного движения составляет

2. Из формулы (5) находим угловое ускорение вала:

3. К концу 12-й секунды вал приобретает угловую скорость [см. формулу (6)):

что соответствует

Задачу можно решить и в другой последовательности, а также выражая величины через обороты.

Задача №3

Колесо, вращающееся со скоростью 1500 об/мин, при торможении начинает вращаться равнозамедленно и через 30 сек останавливается. Определить угловое ускорение и число оборотов колеса с момента начала торможения до остановки.

1. Выразим начальную угловую скорость в рад/сек:

Найдем угловое ускорение из формулы (2):

2. Представим формулу (3) в виде


Тогда число оборотов вала за t = 30 сек — 0,5 мин

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Неравномерное вращательное движение
  • Плоскопараллельное движение тела
  • Определение передаточных отношений различных передач
  • Задачи на поступательное движение тела
  • Неравномерное движение точки по любой траектории
  • Определение траектории, скорости и ускорения точки
  • Кинематический способ определения радиуса кривизны траектории
  • Равномерное вращательное движение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Кинематические уравнения равнопеременного движения.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

=

Проекция вектора скорости на ось ОХ:

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= ‘ = «

Учитывая, что 0 – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости, формула ускорения будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

= 0 + t

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратовпоможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, тоуравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx

|следующая лекция ==>
|Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Дата добавления: 2016-01-29 ; просмотров: 7498 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Равномерное и равнопеременное вращение.

Коллоквиум по физике.

№1
Система отсчета. Основные кинематические характеристики поступательного движения: радиус-вектор, перемещение, путь, скорость, ускорение. Кинематика поступательного движения: равномерное и равнопеременное движение.

Ответ:

Механика — часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.Механическое движе­ние — это изменение с течением времени взаимного расположения тел или их частей. Механика делится на три раздела: I) кинематику; 2) динамику; 3) статику.

Кинематика изучает движение тел, не рассматривая причины, которые это движение обусловливают.

Поступательное движение — это движение, при кото­ром любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. Вращательное движение — это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Система отсчета — совокупность системы координат и часов, связанных с телом от­счета. В декартовой системе координат, используемой наиболее часто, положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r, проведенным из начала системы координат в данную точку.

При движении материальной точки ее координаты с течением времени изменяются. В общем случае ее движение определяется скалярными уравнениями

x = x(t), у = y(t), z = z(t) эквивалентными векторному уравнению r = r(t). Эти уравнения называютсякинематическими уравнениями дви­женияматериальной точки.
Перемещение
вектор Dr = rr0, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени.

Радиусвектор(для произвольной точки в пространстве) — это вектор, идущий из начала координат в эту точку.

Скорость – векторная величина которой определяется как быстрота движения, так и его направ­ление в данный момент времени.
Мгновенная скорость – при неог­раниченном уменьшении Dt средняя скорость стремится к предельному значению. которое называетсямгновенной скоростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пре­деле совпадает с касательной, то вектор скорости v направлен по касательной к траек­тории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости:
Принеравномерном движении — модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной ávñ —средней скоро­стью неравномерного движения: (формула 2.2)

Вектором средней скорости называется отношение приращения Dr радиу­са-вектора точки к промежутку времени Dt:

Путь — длина участка траектории материальной точки, пройденного точкой за определенное время.
Длина пути —длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени Ds и является скалярной функцией времени: Ds = Ds(t). (рис.2)

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr| равен пройденному пути Ds.

Если выражение ds = vdt (см. формулу (2.2)) проинтегрировать по времени в пре­делах от t до t + Dt, то найдем длину пути, пройденного точкой за время Dt: (2.3)
При равномерном движении(2.3) имеет вид: Длина пути, пройденного точкой за промежуток времени от t1 до t2:

Ускорение — физическая величина, характеризующая быстроту изменения скорости по модулю и направлению.
Средним ускорением неравномерного движения в интервале от t до t + Dt называется векторная величина, равная отношению изменения скорости Dv к интервалу вре­мени Dt
Мгновенное ускорение–предел среднего ускорения: т.е.:

Ускорение a — векторная величина, равная первой производной скорости по времени.

Равномерное и равнопеременное движения:

В зависимости от тангенциальной и нормальной составляющих ускорения движе­ние можно классифицировать следующим образом:

1) , аn = 0 прямолинейное равномерное движение;

2) , аn = 0 прямолинейное равнопеременное движение. Если начальный момент времени t1=0, а начальная скорость v1=v0, то, обозначив t2=t и v2=v, получим , откуда

Длина пути, пройденного точкой, в случае равнопеременного движения:
3) , аn = 0— прямолинейное движение с переменным ускорением;

4) , аn = const. При скорость по модулю не изменяется, а изменяется по направлению. Из формулы an=v 2 /r следует, что радиус кривизны должен быть посто­янным. Следовательно, движение по окружности является равномерным;

5) , равномерное криволинейное движение;

6) , — криволинейное равнопеременное движение;

7) , — криволинейное движение с переменным ускорением.

№2
Основные кинематические характеристики вращательного движения: угловой путь, угловая скорость, угловое ускорение. Соотношения между кинематическими характеристиками поступательного и вращательного движения. Равномерное и равнопеременное вращение.

Угловой путь – скалярная величина, равная углу, на который перевернется радиус-вектор данной точки за время dt

Угловая скорость— векторная величина, равная первой производной угла поворота тела по времени: .
Линейная скорость точки т.е.
Формула для линейной скорости в векторном виде: При этом модуль векторного произведения, по определению, равен , а направление совпадает с направлением поступательного движения правого винта при его вращении от к R.
Если ( = const, то вращение равномерное и его можно характеризовать периодом вращения T — временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2p. Так как промежутку времени Dt = T соответствует = 2p, то = 2p/T, откуда . Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения: откуда

Угловое ускорение — векторная величина, равная первой производной угловой скорости по времени: При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном — противонаправлен ему.

Соотношения между кинематическими характеристиками поступательного и вращательного движения:

Между поступательным и вращательным движениями существует аналогия, которая позволяет легко запоминать формулы, относящиеся к вращательному движению.
Основные характеристики поступательного движения: путь S, скорость v, ускорение а и время t. При вращении им соответствуют: угол поворота φ, угловая скорость со, угловое ускорение ε и время t.

Равномерное и равнопеременное вращение.

Равномерное вращение — вращение тела с постоянной угловой скоростью ω = const.
. (3.7) — уравнение равномерного вращения тела.
Из уравнения (3.7) находим , то есть угловая скорость равномерного вращения тела равна отношению приращения угла поворота за некоторый промежуток времени к величине этого промежутка времени.
Равнопеременное вращение — вращение тела при котором угловое ускорение постоянно (ε=const) во все время движения.
З
акон равнопеременного вращения, если при t=0, φ=φ0, ω=ω0. соответствующих: , или

№3

Тангенциальное и нормальное ускорения. Ускорение при криволинейном движении.
Ответ:

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости.
Тангенциальная составляющая ускорения: т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.
Нормальная составляющая ускорения: направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).
Полное ускорение тела — геометрическая сумма тангенциальной и нормальной составляющих: .Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная состав­ляющая ускорения — быстроту изменения скорости по направлению (направлена к цен­тру кривизны траектории).

№4
Понятие силы и массы. Инерциальные системы отсчета. Законы Ньютона в механике.

Масса тела — физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.
Сила— это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.
Инерциальная система отсчета – только в этой системе отсчета выполняется Первый Закон Ньютона. Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета. Пример: Гелиоцентрическая (звездную) система.

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции.
Второй Закон Ньютона:в инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки. Формула:

(или уравнение движения материальной точки)

Третий Закон Ньютона:материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению.F12 = – F21,

F12 — сила, действующая на первую материальную точку со стороны второй;

F21 — сила, действующая на вторую материальную точку со стороны первой.


источники:

http://helpiks.org/6-64879.html

http://poisk-ru.ru/s33745t11.html