Кинетические уравнения реакции первого второго третьего порядка

Кинетические уравнения реакции первого второго третьего порядка

Из уравнений (4) и (5) видно, что критериями первого порядка реакции по реагенту А является линейная зависимость ln [ A ]t или ln t

В тоже время по тангенсам углов наклона линейных зависимостей можно определить константы скорости.

Другой тест правильности выбранного первого порядка является постоянство константы скорости реакции, вытекающее из уравнения (5)

Размерность константы скорости первого порядка dim < k >= [1/ c ], [1/мин] или соответственно с -1 , мин -1

Третий тест основан на концентрационной зависимости времени полупревращения. Условие полупревращения [ A ] = 0,5[ A ]0 , тогда в соответствии с уравнением (5)

Можно видеть, что критерием первого порядка реакции является независимость времени полупревращения t ½ от начальной концентрации реагента [ A ]0.

Примерами подобных реакций первого порядка являются реакции изомеризации, а также реакции разложения некоторых сложных молекул в газовой фазе.

и в жидкой фазе, например, гидролиз трет-бутилбромида.

Для реакции A + B C + D можно записать уравнение скорости

Обозначим [ A ]0 и [ B ]0 – начальными концентрациями реагентов А и В, а Х – количество прореагировавших А и В, тогда уравнение (1) приобретет вид

Разделяя переменные, имеем

Проинтегрируем левую часть этого уравнения методом неопределенных коэффициентов, для чего представим дробь

в виде суммы дробей

Решая совместно эти уравнения, имеем

,

Подставляя значения α и β в уравнение (3) и (4) и интегрируя полученные уравнения в соответствующих пределах

Из уравнения (5) видно, что критерием правильности выбранного второго порядка реакции является линейность зависимости

от времени.

По тангенсу угла наклона этой зависимости можно определить константу скорости реакции. Другим критерием правильности выбранного второго порядка является постоянство значений k , вычисленных в соответствии с уравнением (5):

во всем диапазоне пар значений τ – х.

Размерность константы скорости второго порядка

или, соответственно, л·моль -1 ·с -1 , л·моль -1 ·мин -1 .

Если вещества А и В взяты в равных количествах или реакция идет с участием одного вещества, например

то при постоянстве объема удобно использовать в качестве переменной концентрацию одного из исходных веществ

тогда кинетическое уравнение будет иметь вид

Интегрируя это уравнение в соответствующих пределах

приходим к выражению

Из уравнений (7) и (8) следует, что критериями правильности выбранного второго порядка являются линейный характер зависимости 1/[ A ] от t и постоянство значения k , вычисленных для различных пар значений [ A ] t по формуле

Третий критерий правильности второго порядка основан на определении времени полупревращения t ½ . Так как [ A ] = 0.5[ A ]0, то в соответствии с уравнением (7)

, откуда

Можно видеть, что критерием второго порядка является обратно пропорциональная зависимость между t ½ и начальной концентрацией реагента. В соответствии с выражениями (7) и (8) константы скорости второго порядка можно определить по тангенсу угла наклона зависимостей или от времени.

Имеется множество реакций протекающих по кинетике второго порядка:

и простой случай, соответствующий равенству исходных и текущих концентраций реагентов

Разделяя переменные и интегрируя

Из уравнения (3) видно, что критериями правильности выбранного третьего порядка является линейность зависимостей или от t , постоянства значения k , вычисленное по формуле

для всех пар значений t и [ A ] и обратно пропорциональная зависимость между временем полупревращения и квадратом начальной концентрации реагента

В соответствии с уравнением (3) константа скорости третьего порядка может быть определена по тангенсу угла наклона зависимости или от времени.

Интегрирование уравнения (1)

приводит к выражениям

Из уравнений (2) и (3) следует, что критериями нулевого порядка по реагенту А являются линейный характер зависимости [ A ] от t , постоянство k , вычисленного по формуле

во всем диапазоне пар значений t – A и прямолинейная зависимость между временем полу превращения и начальной концентрацией реагента

Из уравнений (2) и (3) следует, что константа скорости нулевого порядка может быть определена по тангенсу угла наклона зависимостей [ A ]0 – [ A ] или [ A ] от времени

Сложные реакции представляют собой совокупность простых реакций. К сложным реакциям относятся обратимые реакции.

При кинетическом анализе сложных реакций руководствуются принципом независимости простых реакций, согласно которому каждая простая реакция, входящая в сложную ведет себя кинетически так, как если бы она была единственная.

в начальный момент времени концентрация реагента A составляет [ A ]0, а [ B ] = 0, то уравнение этой реакции запишется как

Выражая r через концентрацию [A] имеем

= k1<[A]0 – X> – k-1X

= k1<[A]0 – X> – k-1X

где X – количество молей вещества A в единице объеме, которое прореагировало к моменту τ и соответственно количество молей вещества B в единице объеме, которое образовалось к этому моменту. Преобразуя правую часть уравнения (2)

= k1[A]0 (k-1 + k1)X

В условиях равновесия

При τ ® ¥ X стремится к своему равновесному значению X ® X ¥ . Тогда

где

Тогда кинетическое уравнение (3) примет вид

Интегрируя это уравнение в соответствующих пределах

и

В соответствии с выражениями (6) и (7) кинетические зависимости для A и B будут иметь следующий вид

Пользуясь интегральной формой кинетического уравнения (5) и соотношением можно на основе кинетических данных определить значения констант скоростей k 1 и k -1

Так, в соответствии с (5)

так как , то

Подставляя последнее выражение в уравнение (8), имеем

Подставляя выражение (10) в уравнение (8), имеем

Рассмотрим систему параллельных реакций первого порядка

В соответствии с ранее принятыми обозначениями суммарная скорость расходования реагента A выразится уравнением

По форме уравнение (1) подобно кинетическому уравнению необратимой реакции первого порядка, поэтому его интегральная форма имеет вид.

Разрешая уравнение (2) относительно [ A ] имеем

Для определения констант k 1 и k 2 рассмотрим уравнения конкурирующих параллельных реакций.

Поделив почленно, левые и правые части уравнений (5) и (6), имеем уравнение , интегрирование которого приводит к равенству

Разделяя, левые и правые части уравнений (5) и (1), (6) и (7), приходим к очевидным равенствам

и

интегрирование которых дает уравнения:

и

Подставляя в последние уравнения выражение (4) приходим к равенствам

Уравнения (2) и (8) являются основой для определения абсолютных значений констант скорости конкурирующих реакций k 1 и k 2 . На первом этапе можно определить сумму констант скоростей k 1 + k 2 , пользуясь уравнением (2). Затем на основе линейных зависимостей между XB и X , а также XC и X определяют брутто константы и , из которых рассчитывают k 1 и k 2 по ранее определенному значению суммарной константы скорости k 1 + k 2 .

Нетрудно показать, что для трех параллельных реакций первого порядка

,

,

Этот случай более сложен по сравнению с предыдущим. Рассмотрим систему параллельных реакций

Уравнение скорости расхода A в этой системе реакций с учетом его количества, прореагировавшего к моменту времени t (Х) имеет вид:

или с учетом преобразований

обозначая , имеем

Разделяя переменные, приходим к выражению

Интегрируем левую часть уравнения (3) методом неопределенных коэффициентов, для чего представим левую её часть в виде суммы дробей.

или

так как , то и

Тогда и

Откуда и ,

С учетом (4) возвращаемся к уравнению (3)

Интегрирование уравнения (5) приводит к выражению

Откуда

или

Возвращаясь к соотношению преобразуем (6) в равенство

Рассмотрим систему двух последовательных реакций первого порядка

В силу принципа независимости скорости расходования реагента A выражается уравнением скорости необратимой реакции первого порядка

Решение которого дается в виде

, и

Уравнение скорости изменения концентрации промежуточных продуктов

Разделим почленно левые и правые части уравнений (3) и (1)

Уравнение (4) имеет признаки однородного уравнения первого порядка. Для его решения вводим обозначение

Подставляя последнее выражение в уравнение (4), имеем:

Разделяем переменные и интегрируем

и

тогда

и

или

Так как , то уравнение (5) можно выразить в форме

В тоже время в соответствии с уравнением (2)

Тогда уравнение (5) можно преобразовать в форму

Выведенные зависимости показывают, что в случае необратимых последовательных реакций уравнение для первого промежуточного продукта связано с характеристиками лишь первых двух стадий, оставаясь одинаковым при любом числе и характеристиках последующих стадий. При этом независимо от начальной концентрации реагента A , значение второй характеристики материального баланса укладывается на одну кривую, если её изображать как функцию ХА или t .

Используя уравнение (5) можно найти по экспериментальным данным путем подбора и зная, на основе кинетически исчерпывания A величину k 1 – определить k 2 .

Из анализа уравнения (6) следует, что при XA = 0 и XA = 1 , что говорит о наличии максимума . Его положение можно найти, приравнивая к нулю соответствующую производную

откуда

и значение максимума

Из выражений (8) и (9) видно, что положение и величина максимума промежуточного продукта в необратимых реакциях первого порядка зависит только от соотношения констант скоростей первых двух стадий. При этом, чем больше величина , тем ниже максимум и тем больше его положение смещается в сторону более низких степеней превращения (и наоборот). Очевидно, что по экспериментальному положению максимума можно определить по специальным номограммам или по уравнению (8) значение и использовать его в дальнейшем для описания значений концентраций B во времени согласно уравнению (7)

Уравнение образования продукта C :

Максимальная скорость соответствует точке перегиба на зависимости [ C ] от t и определяется из условия

Легко видеть, что это условие соответствует одновременно условию максимума концентрации B , определяемого уравнениями(8) и (9). Качественно проанализированные зависимости могут быть представлены графически.

Неэлементарные реакции состоят из ряда элементарных стадий, составляющих их механизм. Кинетика таких реакций определяется последовательностью элементарных стадий, их характером (обратимые, необратимые), природой реагентов, интермедиатов и продуктов реакции. При кинетическом анализе неэлементарных реакций возникает задача определения концентраций интермедиатов, играющих ключевую роль в образовании продуктов или расходовании реагентов. В качестве инструмента такого определения используется принцип квазистационарных концентраций Боденштейна – Семенова. Согласно этому принципу скорость изменения концентраций нестабильных интермедиатов пренебрежимо мала по сравнению со скоростью изменения концентраций реагентов и продуктов реакции и её можно считать равной нулю. Применение принципа стационарных концентраций к неэлементарным реакциям, протекающим по сложному механизму, позволяет исключить из кинетического описания процессов неизвестные концентрации интермедиатов и получить одно или некоторый минимум дифференциальных уравнений скорости, выраженных через подлежащие измерению концентрации реагентов и продуктов реакции.

Рассмотрим пример неэлементарной реакции, описываемой стехиометрией

и протекающей через образование интермедиата Q

Скорость реакции можно приравнять к скорости образования продукта B

В соответствии с принципом квазистационарных концентраций

откуда

Подставляя последнее выражение в уравнение (1) приходим к уравнению скорости реакции

Если экспериментально возможно непосредственно измерить скорость реакции, то обработку кинетических данных можно провести, преобразуя уравнение (3) как:

Последнее уравнение приводится к виду

Обрабатывая зависимость (4) в координатах по ординате находят k 1 , а по тангенсу угла наклона . Полученных констант достаточно для кинетического описания реакции, так как, разделив числитель и знаменатель уравнения (3) на k 2 , приходят к уравнению

Д.Г.НАРЫШКИН

КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

Возможности компьютерной математики

при исследовании поведения химических систем во времени

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТТУ)

ВВЕДЕНИЕ 3

1. ОБЩИЕ ЗАКОНОМЕРНОСТИ ХИМИЧЕСКОЙ КИНЕТИКИ

1.1. Скорость реакции

1.2. Влияние концентрации на скорость реакции

1.3. Молекулярность и порядок реакции

1.4. Прямая и обратная задача химической кинетики

1.5. Реакция первого порядка

1.6. Реакции второго порядка

1.7. Реакции других порядков

1.8. Методы определения порядка реакции

2. Сложные реакции

2.1. Кинетика обратимых реакций

2.2 Параллельные реакции

2.3 Последовательные реакции

2.4 Метод квазистационарных концентраций

3. ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

3.1.Уравнение Аррениуса

3.2. Связь энергии активации с тепловым эффектом реакции

3.3. Связь между скоростью реакции и равновесием

4. КИНЕТИКА ГЕТЕРОГЕННЫХ РЕАКЦИЙ

4.1. Общие понятия

4.2. Макрокинетика. Внешнедиффузионная область

4.3. Макрокинетика. Внутридиффузионное торможение

5. КИНЕТИКА РЕАКЦИЙ В ОТКРЫТЫХ СИСТЕМА

5.1. Химические реакторы.

5.2. Реакторы идеального смешения.

5.3. Реакторы идеального вытеснения.

5.4. Обратимые химические реакции в реакторах

в реакторах смешения и вытеснения.

7. Заключение

8. Рекомендуемая литература

ВВЕДЕНИЕ

Термодинамический метод изучения химических реакций позволяет сделать вывод о принципиальной возможности исследуемого процесса в тех или иных условиях и о глубине его протекания.

При постоянстве давления и температуры самопроизвольное протекание процесса возможно только в направлении уменьшения энергии Гиббса.

Условие определяет принципиальную возможность проведения процесса в заданных условиях из начального состояния в конечное, но не позволяет оценить скорость такого перехода.

Это обстоятельство связано с тем, что реакции не зависит от пути (механизма) процесса, а определяется только начальным и конечным состоянием системы.

Однако химические реакции могут протекать с самыми различными скоростями – от взрывных до очень медленных, протекающих в течение многих месяцев и лет. Даже одна и та же реакция, протекающая на различных катализаторах, может иметь скорости, различающиеся во много раз.

В некоторых случаях необходимо увеличить скорость реакции, в других наоборот, уменьшить. Таких примеров можно привести множество.

Поэтому изучение скорости протекания химических процессов (а это и составляет задачу кинетики) чрезвычайно важно.

Для рационального проведения химических реакций необходимо уметь управлять ими, знать зависимости скорости от различных параметров.

По кинетике издано очень много учебной и методической литературы. Но все эти книги и учебные пособия написаны так, что хочется спросить: «Какое, милые, тысячелетье на дворе?»

Современные системы компьютерной математики позволяют дать быстрый, и что, пожалуй, главное, наглядный прогноз относительно поведения химической системы во времени.

Однако в русскоязычной учебной литературе по кинетике химических реакций подход, в котором используются средства символьной математики в совокупности со средствами решения систем дифференциальных уравнений, представляемые математическим пакетом Mathcad , практически отсутствует.

Поэтому, отвечая на естественный вопрос – чем предлагаемое учебное пособие отличается от множества других, можно ответить: настоящее пособие имеет цель продемонстрировать эффективность применения математического пакета Mathcad для решения задач химической кинетики.

Специальные химические дисциплины, такие как термодинамика и кинетика, достаточно математизированы, и часто решение химической задачи вызывает у студентов значительные трудности, связанные с математикой – довольно часто это приводит к тому, что приходится сознательно упрощать задачу.

Пособие иллюстрирует богатейшие возможности, которые открывает применение компьютерной математики перед исследователем для анализа поведения химических систем во времени.

В этом отношении математические пакеты становятся практически незаменимыми элементами обучения, позволяющими сделать акцент на содержательном анализе полученных результатов.

Знаком >>>>>> в тексте пособия отмечен переход к Mathcad документу для интерактивного расчета.

1. ОБЩИЕ ЗАКОНОМЕРНОСТИ ХИМИЧЕСКОЙ КИНЕТИКИ

1.1. Скорость реакции

Х имическая кинетика – наука о скоростях и закономерно-стях протекания химических процессов во времени.

Химическая кинетика изучает механизм протекания процесса, т.е. те промежуточные стадии, состоящие из элементарных актов, через которые система переходит из начального состояния в конечное.

Химическая кинетика изучает скорости этих стадий и факторы, влияющие на их скорость.

Уравнение химической реакции показывает начальное состояние системы (исходные вещества) и её конечное состояние (продукты реакции), но не отражает механизма процесса. Однако путь перехода системы из начального в конечное состояние может быть достаточно сложным и «извилистым».
Так, например, реакция

протекает по следующему механизму:

Изучить кинетику реакции – значит показать, как реально протекает исследуемая реакция, её механизм, получить зависимость, связывающую скорость реакции с факторами, влияющими на неё.

Различают два типа химических реакций: гомогенные и гетерогенные.

К гомогенным относят реакции, у которых и исходные вещества и продукты реакции находятся в одной фазе. Взаимодействие веществ в таких реакциях происходит по всему объёму.

К гетерогенным реакциям относят реакции, протекающие на границе раздела фаз.

Пусть протекает реакция

(1.1)

где a 1 , a 2 , ai , b 1 , b 2 , bj – стехиометрические коэффициенты.

Скорость реакции по i –му веществу в гомогенной системе определяется как количество i -го вещества, образующееся (или реагирующее) в единице реакционного объёма в единицу времени:

(1.2)

где V – объём реакционной зоны, Ni – количество i –го вещества.

Если реакция протекает изохорически, т.е. объём во время реакции не меняется, то, поскольку концентрация и объём связаны соотношением

,

скорость реакции можно определить как изменение концентрации вещества во времени

Ранее мы определили скорость химической реакции как изменение числа молей реагирующих веществ в единицу времени в единице объема, т. е.

где — изменение числа молей одного из исходных веществ за время .

Таким образом определяется средняя скорость реакции для заданного интервала времени.

Если объем в процессе реакции постоянен, то

где — изменение концентрации.

или

(скорость всегда положительна, а может быть больше или меньше нуля в зависимости от того, изменение концентрации исходного вещества или продукта реакции мы рассматриваем).

Если интервал времени , то мы получим истинную скорость реакции r в данный момент времени, т. е.

(1.3)

Размерность скорости: моль/(л·с).

Не только знак, но и абсолютное значение скорости зависит от того, по какому из участников реакции она измерена.

Так, например, при протекании реакции

скорость, с которой уменьшается концентрация водорода во время процесса, в три раза больше скорости убывания концентрации азота и в полтора раза выше скорости возрастания концентрации аммиака.

Следовательно, для реакции

скорости по компонентам реакции будут связаны соотношением:

Экспериментально установлено, что скорость реакции зависит от природы реагирующих веществ, их концентрации (или давления), температуры, т.е.

Раскрытие этой зависимости и составляет одну из задач кинетики.

1.2. Влияние концентрации на скорость реакции

Подход к выяснению зависимости скорости реакции от концентрации реагирующих веществ можно иллюстрировать следующим положением теории вероятностей: вероятность одновременного осуществления независимых событий равна произведению вероятностей каждого из них.

Для того чтобы произошло химическое взаимодействие, например, реакция

необходимо, но не достаточно, столкновение реагирующих молекул А и В, т.е. одновременное нахождение их в определённой точке реакционного пространства.

Вероятность ω нахождения молекулы для каждого из веществ прямо пропорциональна количеству молекул в единице объёма, т.е. его концентрации:

, .

Тогда вероятность того, что обе молекулы будут одновременно находиться в одной точке пространства, т.е. что они столкнутся, равна

Но не все столкновения приведут к реакции, а лишь их некоторая доля α , величина которой зависит от температуры и природы веществ, поэтому скорость реакции

Постоянную k , не зависящую от концентрации и зави­ сящую только от температуры и природы реагирующих веществ, называют константой скорости реакции.

Численное значе­ ние k выражает скорость реакции, когда концентрации реагирующих веществ равны 1 моль/л.

Пусть протекает химическая реакция:

aA + bB + … → продукты.

Тогда зависимость скорости реакции от концентрации можно выразить соотношением

(1.4)

Полученное выражение называют законом действия масс.

1.3. Молекулярность и порядок реакции

Число молекул, вступающих в реакцию, определяют молекулярность реакции.

Так, если в реакцию вступает одна молекула, то такая реакция называется молекулярной реакцией. Если в реакции участвуют две молекулы (безразлично, одинаковые или нет), то такая реакция называется бимолекулярной. Встречаются также тримолекулярные реакции.

Реакции более высокой степени молекулярности крайне редки из–за малой вероятности одновременного столкновения большого числа молекул.

Поэтому большинство реакций протекают в несколько элементарных, простых стадий, в которых участвует небольшое число молекул.

Так, например, рассмотренная выше реакция

протекает по следующему механизму:

вторая стадия (медленная)

Определить такие стадии – значит определить механизм, или путь реакции.

Скорость всей реакции определяется скоростью её наиболее медленной стадии, которая и определяет механизм.

Поэтому закон действующих масс справедлив только для таких элементарных стадий.

Молекулярность реакции легко определить в случае простых реакций, протекающих в одну стадию. В большинстве же случаев довольно трудно найти молекулярность реакции.

Поэтому вводится понятие порядка реакции, который можно найти из кинетических уравнений, полученных экспериментально.

Порядок реакции по данному веществу равен степени, в которой концентрация данного вещества входит в уравнение скорости реакции.

Сумма показателей степеней, в которых концентрация всех исходных веществ входит уравнение скорости реакции, равна порядку реакции в целом. Порядок химической реакции по веществу совпадает со стехиометрическим коэффициентом реакции лишь в очень простых реакциях, например в реакции синтеза йодистого водорода:

Порядок этой реакции по водороду (первый) и йоду (первый) равны стехиометрическими коэффициентами, а общий порядок реакции (второй) равен сумме стехиометрических коэффициентов в уравнении скорости реакции

В подавляющем большинстве случаев порядок реакции по веществу отличается от стехиометрических коэффициентов уравнения реакции для этого вещества.

Соответственно общий порядок реакции обычно не равен сумме стехиометрических коэффициентов уравнения реакции.

при температурах, меньших 298К, протекает по следующему механизму:

первая стадия процесса: NO 2 + NO 2 ® NO 3 + NO

вторая стадия процесса: NO 3 + CO ® CO 2 + NO 2,

причем лимитирующей, т.е. скорость определяющей стадией является первая стадия процесса:

Тогда, согласно первому постулату химической кинетики, который утверждает, что скорость всей реакции равна скорости его самой медленной стадии, можно записать:

,

где— скорость первой стадии процесса.

Согласно второму постулату химической кинетики, который утверждает, что скорость элементарной (одностадийной) реакции пропорциональна концентрации реагирующих веществ в степенях, равных стехиометрическим коэффициентам, получим зависимость скорости реакции

от концентрации реагирующих веществ:

Обратите внимание, что скорость реакции

не зависит от концентрации оксида углерода CO .

Уравнение, выражающее зависимость скорости реакции от концентрации каждого вещества, называют кинетическим уравнением реакции в дифференциальной форме.

К сожалению, кинетическое уравнение реакции может быть получено только при её экспериментальном изучении и не может быть выведено из стехиометрического уравнения.

1.4. Прямая и обратная задача химической кинетики

Определение на основании экспериментальных данных о зависимости концентраций от времени проведения процесса параметров кинетического уравнения – порядка реакции и значения константы скорости – составляет так называемую обратную задачу химической кинетики.

Знание кинетического уравнения реакции в дифференциальной форме позволяет определить время достижения некоторой заданной концентрации реагирующего вещества (или продукта реакции).

Пусть, например, протекает реакция

aA + bB + … → продукты,

кинетическое уравнение которой:

Тогда время достижения некоторой концентрации вещества А можно определить, интегрируя кинетическое уравнение реакции в дифференциальной форме:

Решая дифференциальное уравнение

можно получить зависимость концентрации реагирующего вещества (или продукта реакции) от времени проведения процесса – так называемых кинетических кривых.

Определение – на основании феноменологической модели процесса – концентраций реагентов от времени проведения реакции составляет прямую задачу химической кинетики.

Отметим сразу, что аналитически не всегда удаётся решить дифференциальное уравнение, особенно в случае сложной кинетики.

В этом случае прибегают к численным методам решения и использование компьютерной математики. В частности, применение математических пакетов, например, таких, как Mathcad , становится незаменимым инструментом в исследовательской практике и в процессе обучения.

1.5. Реакция первого порядка

Реакция первого порядка может быть записана в общем виде:

Примером такой реакции может служить реакция разложения диметилового эфира:

Кинетическое уравнение реакции первого порядка можно представить дифференциальным уравнением

(1.5)

Тогда время t достижения некоторой концентрации диметилового эфира CH 3 OCH 3 можно определить, интегрируя соотношение (1.5):

,

где С и C 0 – концентрация CH 3 OCH 3 в момент времени t и t =0.

Интегрирование приводит к выражению

(1.6) И тогда зависимость концентрации исходного вещества CH 3 OCH 3 от времени проведения процесса:

. (1.7)

Из (1.7) следует, что концентрация исходного вещества со временем изменяется по экспоненциальному закону:

Проиллюстрируем изменение концентрации в зависимости от времени на примере реакции первого порядка

с начальной концентрацией моль/л и константой скорости при некоторой температуре k=0.05 1/c

Рис.1. Зависимость концентрации

от времени в реакции первого порядка .

и, в логарифмических координатах, согласно зависимости

Кинетические уравнения реакции первого второго третьего порядка

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Если реакция протекает последовательно через несколько гомогенных или гетерогенных элементарных стадий, то суммарная скорость всего процесса определяется самой медленной его частью, а молекулярность заменяется порядком реакции – формальным показателем при концентрации реагирующих веществ. Поэтому весь процесс в целом лучше характеризует порядок реакции .

Кинетическое уравнение реакции только для элементарных стадий совпадает с выражением ЗДМ. В этих случаях молекулярность и порядок реакции совпадают, хотя и не всегда. Так, при избытке одного из компонентов элементарной реакции А + В (А >> В) скорость реакции будет практически зависеть от изменения концентрации вещества В (А = const), поэтому порядок бимолекулярной реакции понижается до первого. Аналогично тому, что скорость реакции может характеризоваться по любому веществу, участвующему в реакции, для реакции кинетические уравнения по веществу А и веществу В выглядят соответственно

а общее кинетическое уравнение –

(5.2)

Здесь – общий порядок реакции. Запишем кинетическое уравнение в дифференциальной форме для разных исходных реагентов:

Разделение переменных и интегрирование в пределах от нуля до τ дает приведенные в таб. 5.1 уравнения для реакций первого, второго и третьего порядков.

Порядок реакцииКинетическое уравнение,
размерность
Период полупревращения,
ττ
1
[с –1 ]

[с –1 ]
2
[л∙моль∙с –1 ]

[л∙моль –1 ∙с –1 ]
3
[л 2 ∙моль –2 ∙с –1 ]

[л 2 ∙моль –2 ∙с –1 ]

Таблица 5.1

Решения кинетических уравнений 2-го и 3-го порядка, приведенные в таблице 5.1, справедливы только при равных начальных концентрациях веществ

В каждом случае кинетическое уравнение линейно в соответствующих координатах , что позволяет графически определить порядок реакции (рис. 5.2).

1
Рисунок 5.2

Прологарифмировав уравнение (5.2), получим lg = lg + lg ; из графической зависимости (рис. 5.2) получаем lg и .

Порядок реакции, особенно гетерогенной, может быть не только целочисленным (в том числе и нулевым), но и дробным. Нулевой порядок реакции указывает на постоянство скорости во времени.

Для гетерогенной реакции можно создать концентрационнные условия, при которых порядок реакции будет меняться в пределах от нуля до единицы. Действительно, при больших парциальных давлениях кислорода в приповерхностном слое твердого углерода большой концентрационный градиент способствует практически мгновенному восполнению прореагировавшего кислорода. Следствием этого оказывается постоянство скорости реакции по кислороду, поскольку

const. Поэтому реакция горения углерода будет в этих условиях подчиняться кинетическому уравнению нулевого порядка. При уменьшении парциального давления кислорода, начиная с некоторого скорость реакции будет соответствовать кинетическому уравнению первого порядка При промежуточных давлениях кислорода порядок реакции изменяется в интервале от 0 до 1.


источники:

http://twt.mpei.ac.ru/TTHB/1/Chem/Kin.html

http://chemistry.ru/course/content/chapter5/section/paragraph3/theory.html