Кинетический закон вращательного движения тела задана уравнением

Теоретическая механика:
Вращательное движение твердого тела

Смотрите также решения задач по теме «Вращательное движение» в онлайн решебниках Яблонского, Мещерского, Чертова (с примерами и методичкой для заочников), Иродова и Савельева.

При поступательном движении тела (§ 60 в учебнике Е. М. Никитина) все его точки движутся по одинаковым траекториям и в каждый данный момент они имеют равные скорости и равные ускорения.

Поэтому поступательное движение тела задают движением какой-либо одной точки, обычно движением центра тяжести.

Рассматривая в какой-либо задаче движение автомобиля (задача 147) или тепловоза (задача 141), фактически рассматриваем движение их центров тяжести.

Вращательное движение тела (Е. М. Никитин, § 61) нельзя отождествить с движением какой-либо одной его точки. Ось любого вращающегося тела (маховика дизеля, ротора электродвигателя, шпинделя станка, лопастей вентилятора и т. п.) в процессе движения занимает в пространстве относительно окружающих неподвижных тел одно и то же место.

Движение материальной точки или поступательное движение тела характеризуют в зависимости от времени линейные величины s (путь, расстояние), v (скорость) и а (ускорение) с его составляющими at и an.

Вращательное движение тела в зависимости от времени t характеризуют угловые величины : φ (угол поворота в радианах), ω (угловая скорость в рад/сек) и ε (угловое ускорение в рад/сек 2 ).

Закон вращательного движения тела выражается уравнением
φ = f (t).

Угловая скорость – величина, характеризующая быстроту вращения тела, определяется в общем случае как производная угла поворота по времени
ω = dφ/dt = f’ (t).

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости, определяется как производная угловой скорости
ε = dω/dt = f» (t).

Приступая к решению задач на вращательное движение тела, необходимо иметь в виду, что в технических расчетах и задачах, как правило, угловое перемещение выражается не в радианах φ, а в оборотах φоб.

Поэтому необходимо уметь переходить от числа оборотов к радианному измерению углового перемещения и наоборот.

Так как один полный оборот соответствует 2π рад, то
φ = 2πφоб и φоб = φ/(2π).

Угловая скорость в технических расчетах очень часто измеряется в оборотах, произведенных в одну минуту (об/мин), поэтому необходимо отчетливо уяснить, что ω рад/сек и n об/мин выражают одно и то же понятие – скорость вращения тела (угловую скорость), но в различных единицах – в рад/сек или в об/мин.

Переход от одних единиц угловой скорости к другим производится по формулам
ω = πn/30 и n = 30ω/π.

При вращательном движении тела все его точки движутся по окружностям, центры которых расположены на одной неподвижной прямой (ось вращающегося тела). Очень важно при решении задач, приведенных в этой главе, ясно представлять зависимость между угловыми величинами φ, ω и ε, характеризующими вращательное движение тела, и линейными величинами s, v, at и an, характеризующими движение различных точек этого тела (рис 205).

Если R – расстояние от геометрической оси вращающегося тела до какой-либо точки А (на рис. 205 R=OA), то зависимость между φ – углом поворота тела и s – расстоянием, пройденным точкой тела за то же время, выражается так:
s = φR.

Зависимость между угловой скоростью тела и скоростью точки в каждый данный момент выражается равенством
v = ωR.

Касательное ускорение точки зависит от углового ускорения и определяется формулой
at = εR.

Нормальное ускорение точки зависит от угловой скорости тела и определяется зависимостью
an = ω 2 R.

При решении задачи, приведенной в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности – совершает криволинейное движение.

§ 33. Равномерное вращательное движение

Если угловая скорость ω=const, то вращательное движение называется равномерным.

Уравнение равномерного вращения имеет вид
φ = φ0 + ωt.

В частном случае, когда начальный угол поворота φ0=0,
φ = ωt.

Угловую скорость равномерно вращающегося тела
ω = φ/t
можно выразить и так:
ω = 2π/T,
где T – период вращения тела; φ=2π – угол поворота за один период.

§ 34. Равнопеременное вращательное движение

Вращательное движение с переменной угловой скоростью называется неравномерным (см. ниже § 35). Если же угловое ускорение ε=const, то вращательное движение называется равнопеременным . Таким образом, равнопеременное вращение тела – частный случай неравномерного вращательного движения.

Уравнение равнопеременного вращения
(1) φ = φ0 + ω0t + εt 2 /2
и уравнение, выражающее угловую скорость тела в любой момент времени,
(2) ω = ω0 + εt
представляют совокупность основных формул вращательного равнопеременного движения тела.

В эти формулы входят всего шесть величин: три постоянных для данной задачи φ0, ω0 и ε и три переменных φ, ω и t. Следовательно, в условии каждой задачи на равнопеременное вращение должно содержаться не менее четырех заданных величин.

Для удобства решения некоторых задач из уравнений (1) и (2) можно получить еще две вспомогательные формулы.

Исключим из (1) и (2) угловое ускорение ε:
(3) φ = φ0 + (ω + ω0)t/2.

Исключим из (1) и (2) время t:
(4) φ = φ0 + (ω 2 — ω0 2 )/(2ε).

В частном случае равноускоренного вращения, начавшегося из состояния покоя, φ0=0 и ω0=0. Поэтому приведенные выше основные и вспомогательные формулы принимают такой вид:
(5) φ = εt 2 /2;
(6) ω = εt;
(7) φ = ωt/2;
(8) φ = ω 2 /(2ε).

§ 35. Неравномерное вращательное движение

Рассмотрим пример решения задачи, в которой задано неравномерное вращательное движение тела.

Вращательное движение тела. Закон вращательного движения

В этой статье описывается важный раздел физики — «Кинематика и динамика вращательного движения».

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела — это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r.

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

Если φ измерять в радианах (1 рад — это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела — это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

Согласно предварительной формуле размерность угловой скорости

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T — физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

поэтому период вращения определим следующим образом:

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε, характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

Если тело вращается, ускоряясь, то есть dω/dt > 0, вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено — dω/dt 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой mi на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (Li) направлен перпендикулярно плоскости, проведенной через ri и υi, и образует с ними правую тройку векторов (то есть при движении с конца вектора ri к υi правый винт покажет направление вектора Li).

В скалярной форме

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

Так что момент импульса материальной точки для вращательного движения примет вид

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

Величина li, равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы Fi.

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

Если вместо линейной скорости подставить ее выражение через угловую:

то выражение для момента импульса примет вид

Величина Ii = miri 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

Момент силы и момент инерции

Закон вращательного движения гласит:

Известно, что представить момент импульса тела можно через момент инерции:

Учитывая, что угловое ускорение определяется выражением

получим формулу для момента силы, представленного через момент инерции:

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I0 + ma 2 ,

где I0 — начальный момент инерции тела; m — масса тела; a — расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

Задачи на вращательное движение тела в теоретической механике

Задачи на вращательное движение тела:

Мерой инертности материальной точки, а также тела при поступательном движении является их масса.

Если же тело вращается, то мерой инертности служит его момент инерции —величина, зависящая от величины массы тела и от того, каким образом масса распределена относительно оси вращения тела.

Как известно, моментом инерции тела относительно некоторой оси называется величина, составленная из суммы произведений масс всех материальных точек тела на квадраты расстояний от этих точек до оси вращения.

В математической форме величину момента инерции тела можно представить такой формулой:

Этой формулой можно пользоваться для определения моментов инерции тел, имеющих геометрическую форму тел вращения.

Если тело составлено из нескольких частей, имеющих определенную геометрическую форму, удобно использовать еще формулу


где Jc—момент инерции тела относительно центральной оси (т. е. относительно оси, проходящей через центр тяжести тела); J — момент инерции тела относительно оси, параллельной центральной оси; m—масса тела и а —расстояние между осями.

Если тело имеет очень сложную форму, то момент инерции определяется либо из опыта, либо по формулам, приведенным в различных технических справочниках.

Приведем несколько формул для определения моментов инерции тел (во всех формулах т—масса тела, а линейные размеры обозначены на рисунках).

1. Момент инерции тонкого прямого

стержня относительно его центральной оси, перпендикулярной к стержню (рис. 265,а)

2. Момент инерции тонкого прямого стержня относительно оси, перпендикулярной к стержню и расположенной у одного из его концов (рис. 265, б):


3. Момент инерции сплошного однородного цилиндра относительно его геометрической оси (рис. 266, а)

4. Mомент инерции полого однородного цилиндра относительно его геометрической оси (рис. 266, б)

Сопоставляя между собой при помощи рисунков формулы (I) и (2), а также (3) и (4). необходимо учитывать то, что при одной и тон же массе стержней и одинаковой длине второй стержень обладает в четыре раза большим моментом инерции (см. рис. 265, б), а также при одинаковых внешних размерах цилиндров и одинаковой массе (если цилиндры изготовлены из различных материалов, например из алюминия и стали) полый цилиндр обладает большим моментом инерции.

Если в формуле (4) пренебречь толщиной стенки цилиндра, т. е считать, что D—d. (вся масса распределена по ободу цилиндра), то

Единицей измерения момента инерции тела являются в СИ:

в системе МКГСС:

При вращательном движении (см. § 45-11) движущим фактором является вращающий момент (пара сил).

Если алгебраическая сумма моментов всех пар сил, приложенных к телу, имеющему ось вращения, не равна нулю, то тело приобретает угловое ускорение, числовое значение которого прямо пропорционально вращающему моменту

В этом уравнении, выражающем основной закон динамики для вращательного движения тела, множителем пропорциональности является момент инерции тела. Тело с большим моментом инерции труднее привести во вращение.

Кинетическая энергия вращающегося тела

Если тело находится в плоскопараллельном движении, например катящееся колесо, то его кинетическая энергия складывается из двух слагаемых:

где —кинетическая энергия, получающаяся от поступательной части этого сложного движения (см. § 37-8) при скорости равной скорости центра тяжести тела, а кинетическая энергия от вращательной части, причем J —момент инерции относительно оси, проходящей через центр тяжести тела.

Задача №1

Два цилиндра, изготовленных из различных материалов (см. рис. 266), имеют одинаковую массу = 80 кг; их наружные диаметры = 240 мм, а внутренний диаметр полого цилиндра = 200 мм. Полый цилиндр вращается вокруг собственной оси с угловой скоростью С какой скоростью должен вращаться сплошной цилиндр, чтобы оба цилиндра имели одинаковый запас кинетической энергии?

1. Если кинетические энергии обоих цилиндров обозначить, соответственно,


то по условию задачи


2. Если определять числовые значения моментов инерции обоих цилиндров, то

Определим скорость сплошного цилиндра

3. Если же числовые значения моментов инерции не определять, то

В полученную формулу


подставим числовые значения диаметров:

Для второго варианта решения, как видно, массу цилиндров можно и не задавать.

Задача №2

Стержень длиной и массой 3 кг имеет на концах шарообразные массы по 2 кг каждая (диаметры шариков d—10 см). Какой вращающий момент нужно приложить к стержню, чтобы привести его во вращение с угловым ускорением вокруг оси, перпендикулярной к стержню и

проходящей через центр тяжести системы (рис. 267)?

1. Чтобы определить необходимый вращающий момент, нужно воспользоваться уравнением основного закона динамики для вращательного движения тела


но предварительно надо определить момент инерции системы стержня и шариков.

2. Находим момент инерции этой системы который складывается из момента инерции стержня и двух моментов инерции шариков которые считаем материальными точками, т. е. при определении моментов инерции шариков принимаем, что их массы сосредоточены в центрах шариков на расстоянии

Подставим числовые значения:


3. И теперь определим вращающий момент, необходимый для сообщения стержню ускорения

Задача №3

Тормозной шкив, масса которого m— 2 кг, диаметр d—0,8 м, имеет форму сплошного диска и вращается но инерции с угловой скоростьюДля остановки вала

к шкиву прижимают тормозную колодку k с силой Q—5 н. Через сколько секунд вал остановится и сколько оборотов он сделает до остановки, если коэффициент трения колодки о шкив f — 0,4? Трением в подшипниках вала, на котором насажен шкив, пренебречь; массу вала не учитывать.

Решение 1 — при помощи основного закона для вращающегося тела.

1. Изобразим шкив на рис. 268. Прижатая к шкиву колодка создает силу трения F=fQ, направленную в сторону, противоположную вращению колеса. Таким образом, на шкив с момента прижатия колодки начинает действовать тормозной момент, направленный в сторону, противоположную его

2. Шкив имеет форму сплошного диска, его момент инерции определяется но формуле


3. Из основного уравнения динамики для вращательного движения находим угловое ускорение е:

4. Из формулы для углового ускорения равнопеременного вращения находим время торможения:

5. По уравнению равнопеременного вращения определяем угол поворота шкива (вала) за это время:

6. Находим число оборотов вала, сделанное им с момента начала торможения до остановки:


Эту задачу можно решить и другим способом (используя закон кинетической энергии для вращающегося тела).

1. Закон кинетической энергии вращающегося тела выражается уравнением

2. В данном случае тормозной момент производит при остановке шкива (вала) работу

так как конечная угловая скорость энергии шкива имеет вид

Отсюда (значение J —найдено в первом решении)

Число оборотов вала


4. Время торможения можно найти из формулы

Задача №4

Цилиндр 1, масса которого и диаметр d=24 сж, может свободно вращаться около горизонтальной оси. На цилиндр намотана гибкая нить, имеющая на конце груз 2


массой Падая, груз разматывает нить и вращает цилиндр (рис. 269, а).

Определить угловое ускорение цилиндра, натяжение нити, кинетическую энергию груза А и цилиндра через t = 4 сек после начала движения.

Массой нити и трением в оси цилиндра пренебречь.

Решение — при помощи метода кинетостатики и уравнения основного закона динамики для вращающегося тела.

1. В задаче рассматриваются два связанных между собой тела: вращающийся цилиндр и поступательно двигающийся груз. Мысленно разрежем нить и изобразим оба тела с действующими на них силами отдельно друг от друга.

2. На рис. 269, б показан цилиндр, на который действует вращающий момент нары сил созданной натяжением нити (сила приложена к подшипнику цилиндра, см. § 45-11):

3. Вращение цилиндра определяется уравнением:

(а)
В полученное выражение для Т входит вторая неизвестная величина е. Чтобы облегчить дальнейшие вычисления, подставим сюда те величины, которые известны (в единицах СИ: и d = 0,24 м):
(а’)
4. Изобразим теперь (рис. 269, в) груз, на который действуют его вес реакция нити Т, равная ее натяжению. Так как цилиндр падает с ускорением то силы не уравновешивают друг друга. Добавим к ним силу инерции Тогда уравнение равновесия сил примет вид

Заменим в последнем уравнении силу инерции и вес груза их значениями

5. Считая нить нерастяжимой, получаем, что ускорение а, груза равно ускорению любой точки нити, а следовательно, и точки А на ободе цилиндра (см. рис. 269, б). Но точка А принадлежит телу, вращающемуся с угловым ускорением е, поэтому

Получено второе уравнение с теми же неизвестными Т и е.

Подставив в (б) числовые значения и d=0,24 м), получаем

(б’)

6. Решим систему уравнений (а’) и (б’). Правые части обоих уравнений равны 7, значит

Подставим найденное значение е в любое из уравнений, например в (а’):

7. Определим кинетическую энергию цилиндра и груза через t = 4 сек после начала движения системы:

8. Таким образом, общий запас кинетической энергии обоих тел

Решение 2 —при помощи закона кинетической энергии.

1. Второе решение начинается с того, чем заканчивается первое.

Через t — 4 сек оба тела приобретают кинетическую энергию благодаря работе, произведенной грузом 2 при падении с высоты h (рис.70)

кинетическая энергия цилиндра

Здесь h —путь, пройденный грузом за t = 4 сек с ускорением поэтому

4. Подставим в левую часть равенства (а) значение h и сократим обе части равенства на общие множители:

откуда

5. Натяжение Т нити найдем при помощи уравнения основного
закона динамики
Здесь

поэтому

6. Так как значение углового ускорения е известно, легко найти величины кинетических энергий(см. п. 2 решения).

Вращательное движение тела

При изучении темы ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТЕЛА вы научитесь решать простые задачи кинематики тела. В таких задачах вводятся векторные величины — угловая скорость и угловое ускорение Важно понять, что для вращательного движения тела эти векторы постоянно направлены по оси вращения. При сферическом движении (§ 10.1) векторы угловой скорости и углового ускорения могут лежать на разных прямых, и направления их в общем случае зависят от времени.

ПОСТАНОВКА ЗАДАЧИ. Твердое тело вращается вокруг неподвижной оси. Заданы некоторые кинематические характеристики движения тела и (или) кинематические характеристики движения точки этого тела. Найти остальные кинематические характеристики движения тела или точки.

Пусть тело вращается вокруг оси z. Кинематические характеристики движения тела:

  • — угол поворота
  • — угловая скорость
  • — угловое ускорение

Кинематические характеристики точки на теле:

  • — радиус траектории (расстояние до оси вращения) R:
  • — скорость
  • — ускорение

1. Записываем систему уравнений для всех величин, входящих в условие задачи. В зависимости от условия возможны три основных варианта решения.
Гл.7.Вращательное движение тела

Неизвестный закон вращения. Записываем систему двух уравнений для скорости точки, лежащей на расстоянии R от оси вращения, и ее ускорения W:

Для решения задачи необходимо, чтобы три из пяти величин входящих в (1), были заданы в условии.

Вращение с постоянной угловой скоростью. Интегрируя уравнение ,приполучаем

Как правило, отсчет ведется от поэтому в системе трех уравнений (1-2) содержатся семь величин четыре из которых должны быть заданы в условии задачи.

Вращение с постоянным угловым ускорением. Дважды интегрируя уравнение

получаем, при

где — начальная угловая скорость. Совместно с (1) получаем систему четырех уравнений для восьми величин четыре из которых должны быть заданы в условии задачи.

2. Решаем систему. Находим искомые величины.

Замечание. Ряд величин задан в тексте задач неявно. Например, угол поворота может быть задан числом оборотов Слова «покой» и «остановка» соответствуют математической записи

Задача №5

Диск вращается вокруг неподвижной оси с постоянным угловым ускорением Найти ускорение точки, лежащей на расстоянии 4 см от оси вращения, через 7 с после начала движения из состояния покоя.

1. В задаче задано постоянное угловое ускорение. Записываем систему уравнений для величин, входящих в условие задачи:

По условию задачи диск в начальный момент находился в покое, следовательно, Кроме того, при t = 7 с, даны значения R = 4 см, Решая систему двух уравнений (4) с двумя неизвестными и W, находим

Ответ.

Передача вращения

Постановка Задачи. Механизм состоит из вращающихся на неподвижных осях блоков и поступательно движущихся элементов. Все элементы находятся во фрикционном, зубчатом или ременном зацеплениях. Задана какая-либо кинематическая характеристика одного из тел. Найти кинематические характеристики других тел.

1. Определяем кинематические характеристики тела, с заданным законом движения. Если это тело движется прямолинейно поступательно, то скорость и ускорение любой его точки имеет вид

где — закон движения тела. При заданном вращательном движении находим угловую скорость и угловое ускорение:

где — закон вращения тела (зависимость угла поворота в радианах от времени).

2. Определяем угловую скорость тела, связанного нерастяжимой нитью (ремнем, тросом), фрикционно или зубчатым зацеплением с телом, угловая скорость которого известна:

где — радиусы ободов колес (блоков) 1, 2, на которые надет ремень в случае ременной передачи, или радиусы колес, находящихся в зацеплении; — проекции угловых скоростей колес на ось, параллельную осям вращения. Знак минус берем при внешнем зацеплении, или крестообразной ременной передаче, когда вращение колес происходит в разные стороны. При внутреннем зацеплении (рис. 83) или простой ременной передаче (рис. 84) берем знак плюс. Отношение называется передаточным числом от тела 1 к телу 2. Для зубчатых соединений аналогом (1) является соотношение угловых скоростей

в которое вместо радиусов входят числа зубцов пропорциональные длинам окружностей шестеренок.

Если поступательное движение тела 1 передается вращательному движению тела 2 (или наоборот), то связь линейной и угловой скоростей имеет вид

где — радиус обода, находящегося в контакте с поступательно движущимся телом.

3. Повторяя п.2 для всех пар кинематически связанных тел, составляем и решаем систему уравнений для неизвестных линейных и угловых скоростей.

4. Дифференцируя уравнения полученной системы, получаем аналогичную систему для угловых и линейных ускорений. Например, из уравнения (1) следует, что

Аналогично, из (2) следует связь линейного ускорения поступательно движущегося тела и углового ускорения связанного с ним вращающегося тела:

где — тангенциальная составляющая ускорения точки вращающегося тела в месте контакта. Было бы ошибкой считать так как полное ускорение точки на вращающемся теле включает в себя и нормальную составляющую Решаем систему уравнений для ускорений.

Задача №6

Механизм состоит из двух колес 1, 3 и блока 2, вращающихся на неподвижных осях. Ведущее колесо 1 механизма соединено ремнем с внутренним ободом блока 2. Внешний обод блока находится во фрикционном зацеплении с колесом 3 (рис. 84). Проскальзывание в точке зацепления отсутствует, ремень считать нерастяжимым.

Задан закон движения ведущего колеса: Стрелкой указано положительное направление изменения угла При t = 0.5 с найти ускорение точки М, лежащей на ободе колеса 3.

1. Находим угловую скорость ведущего колеса 1:

2. Определяем угловую скорость блока 2, связанного нерастяжимым ремнем с колесом 1:

где — радиусы ободов, огибаемые ремнем.

3. Колеса 2 и 3 находятся во внешнем зацеплении и вращаются в разные стороны, следовательно

Уравнения (3-5) образуют систему, решая которую, при t = 0.5 с, получаем

4. Дифференцируя уравнения системы (3-5), получаем аналогичную систему для угловых ускорений:

Решаем систему уравнений для ускорений (6) и получаем

Вычисляем ускорение точки М:

Ответ.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Равновесие тяжелой рамы
  • Расчет составной конструкции
  • Момент силы относительно оси
  • Равновесие вала
  • Неравномерное вращательное движение
  • Плоскопараллельное движение тела
  • Определение передаточных отношений различных передач
  • Задачи на поступательное движение тела

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://www.syl.ru/article/189925/new_vraschatelnoe-dvijenie-tela-zakon-vraschatelnogo-dvijeniya

http://www.evkova.org/zadachi-na-vraschatelnoe-dvizhenie-tela-v-teoreticheskoj-mehanike