Кластер квадратные уравнения 8 класс

Интерактивные методы обучения на уроке алгебры по теме «Квадратные уравнения. Способы решения неполных квадратных уравнений». 8-й класс

Разделы: Математика

Класс: 8

Тип занятия: комбинированный.

Место занятия: вводный урок раздела.

Форма организации обучения – учебное занятие.

Цель занятия: познакомить обучающихся с общим видом квадратного уравнения, понятием неполного квадратного уравнения и способами их решения, показать, что источником возникновения квадратных уравнений является реальный мир, что эти уравнения возникли из практических потребностей людей.

План занятия:

  1. Организационный момент.
  2. Актуализация знаний. Ассоциативный ряд.
  3. Работа с текстом в группах.
  4. Сбор коллективной информации.
  5. Введение новых понятий: «квадратное уравнение, виды квадратных уравнений». Работа с текстом учебника.
  6. Кластер на тему «Виды квадратных уравнений».
  7. Изучение нового материала: историческая справка, работа с таблицей.
  8. Систематизация нового материла (работа с таблицей).
  9. Практическая работа: работа в парах, самостоятельная работа.
  10. Итоги занятия. Кластер на тему «Виды квадратных уравнений» дополнение, закрепление изученного.
  11. Домашнее задание.

Образовательные задачи занятия:

  • ввести понятие квадратного уравнения;
  • рассмотреть виды квадратных уравнений;
  • научить классифицировать квадратные уравнения по разным признакам;
  • научить решать неполные квадратные уравнения с применением различных способов.

Развивающие задачи занятия:

  • развивать умение анализировать, самостоятельно делать выводы и устанавливать причинно-следственные связи;
  • развивать познавательный интерес к предмету, мотивацию к изучению квадратных уравнений на основе раскрытия практической значимости изучаемой темы;
  • развивать коммуникативные компетенции;
  • развивать самостоятельность обучающихся, умения преодолевать трудности в учении в ходе изучения нового материала и выполнения практической работы;
  • развивать критическое мышление.

Воспитательные задачи занятия:

  • воспитывать усидчивость и культурк учебного труда при обсуждении результатов;
  • воспитывать стремление к преодолению трудностей в процессе интеллектуальной деятельности;
  • воспитывать гуманность, чувство коллективизма, чувство такта при общении с товарищами;
  • воспитывать толерантность.

Этапы занятия

Формы, методы, приемы; цель применения1. Организационный момент

Приветствие, проверка присутствующих. Объяснение хода занятия.

Определение целей занятия:

Познакомиться с общим видом квадратного уравнения, понятием неполного квадратного уравнения и способами их решения.Методы и приемы: определение целей занятия (для мотивации учебной деятельности)
Цель этапа: подготовить обучающихся к активной совместной деятельности2. Актуализация знаний (вызов)

Задание для обучающихся:

1. Ассоциативный ряд

Выпишите всё, что Вам известно об уравнениях.

– Обсудите в паре.
– Сбор коллективной информации.

2. Работа с текстом (раздаточный материал или материал на слайде презентации, или запись на доске):
Из данных уравнений выбрать квадратные уравнения:

– Сбор коллективной информации.

3. Работа с текстом учебника «Алгебра 8 класс» М.Ю. Макарычев, М.: Просвещение, 2011.

Задание для обучающихся:

– полного и неполного квадратного уравнения;
– приведенного и не приведенного квадратного уравнения;– корня квадратного уравнения;

4. Изображение информации в виде кластера

Проверка:

1. Квадратные уравнения:

1) x 2 – 1 = 0;
5) 2x 2 – 5x + 6 = 0;
6) 7x – x 2 + 3 = 0

2. Вопросы группе:

– По каким признакам вы отнесли данные уравнения к квадратным уравнениям?
– Сформулируйте определение квадратного уравнения.
– Назовите значения коэффициентов выбранных уравнений.Методы и приемы:

  • ассоциативный ряд;
  • самостоятельный анализ;
  • работа в группах;
  • формулировка определений;
  • составление кластера.

Цель этапа: мотивация учебной деятельности, объединение обучающихся и преподавателя в совместную коллективную учебную деятельность.3. Объяснение нового материала

Историческая справка

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а так же с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются квадратные уравнения вида:
Правило решения этих уравнений, изложенное в вавилонянских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствует понятие отрицательного числа и общие методы решения квадратных уравнений.
В Древней Индии уже в 499 году были распространены публичные соревнования в решении трудных задач на составление квадратных уравнений. Одной из таких задач является задача знаменитого индийского математика Бхаскары:

Обезьянок резвых стая
Всласть поевши, развлекаясь,
Их в квадрате часть восьмая
На поляне забавлялась.
А двенадцать по лианам
Стали прыгать, повисая.
Сколько было обезьянок
Ты скажи мне в этой стае?

Составим уравнение к этой задаче.

Если за х взять число обезьянок в стае, то как будет выглядеть уравнение?

Ответ:

Вместе с обучающимися на конкретных примерах (5x 2 = 0, 2x 2 + 6x = 0, x 2 – 4 = 0 и x 2 + 6 = 0) рассмотреть три вида неполных квадратных уравнений: ax 2 = 0, ax 2 + bx = 0, ax 2 + c = 0 и способы их решения. Во время работы обучающиеся делают на полях пометки:

Заполнение таблицы с пометками:

+ я это знал,
– я этого не знал,
! это меня удивило
? хотел бы узнать подробнее.

Полученные данные обучающиеся заносят в таблицу:

Методы и приемы:

  • словесный – рассказ с элементами беседы (для формирования теоретических и фактических знаний);
  • репродуктивный (для запоминания материала)
  • установление межпредметных связей (для развития вариативности мышления и умений применять ранее полученные знания в новой ситуации);
  • метод стимулирования интереса к учению (создание ситуаций занимательности, создание проблемной ситуации);
  • инсерт.

Цель этапа: формирование интереса к изучаемой теме.4. Систематизация полученных знаний.

– Возвращение к таблице (ее уточнение и дополнение с учетом того нового, что узнали).
– Выполнение практического задания.
– Определение способов применения этой информации на практике.
Материал, собранный в таблицу на 3 этапе занятия обобщается, формулируются выводы о способах решения, о количестве и виде корней различных неполных квадратных уравнений. Полученные данные заносятся в таблицу:

Методы и приемы:

  • словесно-наглядный
  • формулировка определений;
  • установление причинно-следственныхсвязей;
  • вспоминание фактов;
  • синтез полученной информации.

Цель этапа: мотивация учебной деятельности, объединение обучающихся и преподавателя в совместную коллективную учебную деятельность5. Практическая работа

Часть I (работа в парах)

Задание группе: разбейте следующие уравнения на две группы по какому-либо признаку:

1-я группа: приведенные и неприведенные.
2-я группа: полные и неполные.

– Какие из этих уравнений вы можете решить? (Неполные квадратные уравнения.)Методы и приемы:

  • словесно-наглядный
  • формулировка определений;
  • установление причинно-следственных связей;
  • вспоминание фактов;
  • синтез полученной информации;
  • самостоятельный анализ и отбор фактов;

Цель этапа: развитие умения работать в паре, анализировать чужое мнение и аргументировано отстаивать свое, развитие логического мышления, рефлексия разновидности мышления.Часть II. Двое обучающихся решают уравнения на обратной стороне доски, остальные обучающиеся самостоятельно выполняют задание в тетрадях, с последующей проверкой и анализом решения.

Решить уравнения: 1) 5x 2 = 0, 2) 169 – x 2 =0, 3) x 2 – 24x = 0, 4) 16x 2 – 4 = 0.Методы и приемы: самостоятельное решение.

Цель этапа: развитие умения работать самостоятельно, анализировать и применять полученные знания.6. Итоги занятия

1. Кластер, который был создан в начале занятия, по теме «Квадратные уравнения», дополняется новой информацией, с повторением всех формулировок.

– Что вы открыли для себя сегодня?
– Что вы узнали нового?

Рефлексия обучающихся. Оценивание наиболее активных.Методы и приемы:

  • повторение;
  • ассоциативный ряд
  • кластер.

Цель этапа: выявить, насколько успешно реализовались задачи обучения, а также стимулировать последующую познавательную деятельность учащихся, закрепление изученного7. Домашнее задание

1. Выучить определения, повторить способы решения неполных квадратных уравнений, по
таблице, составленной на занятии.
2. Решить уравнения:

а) 9x 2 – 25 = 0
б) x 2 – 5x = 0
в) 6х 2 – 24х = 0
г) 4х 2 – 36 = 0

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Кластеры учеников 8 класса по теме: «Квадратные уравнения»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Муниципальное бюджетное общеобразовательное учреждение

    средняя общеобразовательная школа с.Киселёвка

    Ульчского муниципального района Хабаровского края

    Учитель математики Бывалина Людмила Леонидовна

    Кластеры учеников 8 класса по теме: «Квадратные уравнения»

    Автор: Дуксеева З.

    Автор: Стуленко Н.

    Кластер 4

    Кластер 5

    Автор: Хасаншина М.

    Краткое описание документа:

    Кластер — это одна из форм работы с научным текстом, обобщения и систематизации изученного материала. В документе представлены кластеры учеников 8 класса по теме: «Квадратные уравнения». Составленные кластеры позволяют в наглядном виде повторить виды квадратных уравнений, способы их решения, основные формулы темы.

    Курс повышения квалификации

    Дистанционное обучение как современный формат преподавания

    • Сейчас обучается 925 человек из 80 регионов

    Курс профессиональной переподготовки

    Математика: теория и методика преподавания в образовательной организации

    • Сейчас обучается 684 человека из 75 регионов

    Курс повышения квалификации

    Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

    • Сейчас обучается 309 человек из 69 регионов

    Ищем педагогов в команду «Инфоурок»

    Дистанционные курсы для педагогов

    «Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

    Свидетельство и скидка на обучение каждому участнику

    Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

    5 578 555 материалов в базе

    Материал подходит для УМК

    «Алгебра», Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др.

    Глава 3. Квадратные уравнения

    Самые массовые международные дистанционные

    Школьные Инфоконкурсы 2022

    33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

    Другие материалы

    • 06.02.2019
    • 857
    • 35

    • 18.01.2019
    • 677
    • 17

    • 17.01.2019
    • 584
    • 3

    • 30.10.2018
    • 611
    • 6

    • 28.10.2018
    • 1455
    • 3

    • 19.10.2018
    • 2234
    • 42

    • 14.06.2018
    • 777
    • 5

    • 26.05.2018
    • 531
    • 0

    Вам будут интересны эти курсы:

    Оставьте свой комментарий

    Авторизуйтесь, чтобы задавать вопросы.

    Добавить в избранное

    • 16.06.2019 636
    • DOCX 1.7 мбайт
    • 17 скачиваний
    • Рейтинг: 5 из 5
    • Оцените материал:

    Настоящий материал опубликован пользователем Бывалина Людмила Леонидовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Автор материала

    • На сайте: 8 лет
    • Подписчики: 1
    • Всего просмотров: 61005
    • Всего материалов: 26

    Московский институт профессиональной
    переподготовки и повышения
    квалификации педагогов

    Дистанционные курсы
    для педагогов

    663 курса от 690 рублей

    Выбрать курс со скидкой

    Выдаём документы
    установленного образца!

    Учителя о ЕГЭ: секреты успешной подготовки

    Время чтения: 11 минут

    Полный перевод школ на дистанционное обучение не планируется

    Время чтения: 1 минута

    Тринадцатилетняя школьница из Индии разработала приложение против буллинга

    Время чтения: 1 минута

    В Курганской области дистанционный режим для школьников продлили до конца февраля

    Время чтения: 1 минута

    Инфоурок стал резидентом Сколково

    Время чтения: 2 минуты

    Приемная кампания в вузах начнется 20 июня

    Время чтения: 1 минута

    Рособрнадзор не планирует переносить досрочный период ЕГЭ

    Время чтения: 0 минут

    Подарочные сертификаты

    Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

    Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


    источники:

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    http://infourok.ru/klasteri-uchenikov-klassa-po-teme-kvadratnie-uravneniya-3774507.html