Коэффициент k в уравнении волны

Коэффициент k в уравнении волны

Волновое уравнение
Wave equation

Волновое уравнение − линейное дифференциальное уравнение в частных производных, описывающее малые колебания струны, колебательные процессы в сплошных средах и в электродинамике.
В общем случае волна, распространяющаяся в пространстве, описывается уравнением

(1)

где u = u(x,y,z,t) − возмущение в точке x,y,z в момент времени t, v − скорость распространения волны. Уравнение (1) инвариантно относительно замены Монохроматическая волна − распространение колебаний с определённой частотой ω. В случае одномерного распространения волны вдоль оси x формула монохроматической волны имеет вид

u(x,t) = Asin(ωt − xv).

Длина волны λ − путь, пройденный возмущением (состоянием с определённой фазой) за время равное периоду колебаний T

Частота ω и период колебаний T связаны соотношением

Эквивалентные формулы для монохроматической волны, распространяющейся вдоль оси x

u(x,t) = Asin(ωt − kx) = Asinω(t − x/v) = Asin2π(t/T − x/λ).

u(r,t) = (A/r)sin(ωt − kr).

Стоячая волна. При наложении монохроматических волн одинаковой частоты образуется устойчивая картина результирующих колебаний с характерными максимумами и минимумами.

Стоячая волна образуется в системах с двумя жёстко закреплёнными точками. При отражении фаза волны меняется на π и происходит интерференция падающей и отраженной волн.

Падающая волнаu1 = Asin(ωt + kx)
Отражённая волнаu2 = Asin(ωt − kx + π)
Стоячая волнаu1 + u2 = A(x)cosωt(2)

Соотношение (2) можно получить, используя формулу

sinα − sinβ = 2sin[(α − β)/2] cos[(α + β)/2]

и положив 2Asin(2πx/λ) = A(x), A(x) − амплитуда стоячей волны.

Уравнение волны

При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена, если известно, по какому закону колеблется и как взаимодействует со средой тело, вызвавшее волновой процесс. Однако во многих случаях не существенно, каким телом возбуждена данная волна; решается более простая задача: дано состояние колебательного движения в некоторых точках среды в определенный момент времени, например известно расположение фронта волны или волновой поверхности; требуется определить состояние колебательного движения в других точках среды эта задача выходит за пределы нашего курса. Здесь же мы найдем связи между состояниями колебательного движения в различных точках среды в простейшем случае, когда в этой среде распространяется плоская или сферическая синусоидальная волна.

Допустим, что волновой процесс распространяется в положительном направлении оси ОХ, т. е. в сторону возрастания координаты х. Обозначим через у колеблющуюся величину; этой величиной могут быть: смещение частиц среды относительно их положения равновесия, отклонение давления или плотности в данном месте среды от равновесного значения и т. д. Для простоты рассуждений предположим, что распространяющаяся волна — синусоидальная, т. е. в каждой точке среды величина у изменяется со временем по гармоническому закону. Мы разумеется помним, что означают слова «по гармоническому закону». Ну а кто не помнит, напомним. Это означает, что зависимость от времени колеблющейся величины выражается формулой:

здесь выражение ωt + φ называется фазой гармонического колебания, φ – начальная фаза, y0 — амплитуда колебаний.

Сделаем еще одно определение. Колебание (3.1) происходит с одной единственной частотой ω . Такое колебание называется умным словом монохроматическим. Это определение пришло к нам из оптики и в буквальном переводе (с не помню с какого языка) означает одноцветное. Дело в том, что свет различной частоты имеет разный цвет (красный, желтый и т.п.), поэтому свет какого-то определенного цвета имеет определенную частоту. Ну вот так и назвали. Этим определением пользуются и в других разделах физики, в частности и в теории волн в упругой среде. Но вернемся к нашим волнам.

Допустим, что начало отсчета времени выбрано так, что в точке О при t = 0, у = 0, т. φ =0 тогда

где ω = 2π/Т — угловая частота; Т — период; ωt — аргумент синуса (определяющий значение колеблющейся величины в каждый заданный момент времени) есть фаза колебаний в точке О. Требуется найти фазу колебаний в любой другой точке А, отстоящей от О на расстоянии х. Если мы будем знать фазу колебаний в любой точке (ясно, что теперь она будет зависеть от х), то мы будем знать и аргумент синуса, а значит и значение колеблющейся величины в любой момент времени в любой точке.

Так как точка А расположена относительно О в направлении распространения волны, то в данный момент времени t в этой точке будет такое состояние колебательного движения, какое было в точке О на x/с секунд раньше[1]; здесь с -есть скорость распространения фазы колебаний в направлении ОХ. Таким образом, фаза колебаний в точке А в момент t равна фазе колебаний в точке О в более ранний момент t-x/с, т. е. равна ω (t-x/с).

Следовательно, значение колеблющейся величины в точке А в момент времени t:

Это соотношение называется уравнением синусоидальной волны, а с — ее фазовой скоростью.

Допустим теперь, что волна распространяется в обратном направлении, т.е. от А к О, в сторону убывания координаты х. Тогда определенное состояние колебания, т. е. определенная фаза волны, достигает точки А на τ=x/с секунд раньше, чем точки О, следовательно, фаза в точке А в данный момент времени больше фазы в точке О на ωτ=ωx/с. Если по-прежнему принять фазу в точке О в момент t равной ωt, то в точке А в этот же момент времени фаза будет равна ωτ=ω(t+x/с). Таким образом, уравнение синусоидальной волны можно написать в общем виде:

(3.3)

где знак «минус» берется для волны, распространяющейся в направлении возрастания х, а плюс — в обратном направлении.

При выводе формулы (3.3) предполагалось, что амплитуда колебаний y0 по мере распространения волны не изменяется, и среда однородная (т. е. скорость распространения фазы колебаний везде одинаковая). Эти два предположения означают, что мы рассматривали плоскую волну, у сферической волны, как мы увидим в дальнейшем, амплитуда колебаний уменьшается обратно пропорционально расстоянию.

Мы уже знаем, что расстояние λ, пройденное волной (т. е. определенной фазой колебаний) за один период колебаний, называется длиной волны, очевидно,

;

В уравнении волны (3.2) колеблющаяся величина зависит от двух переменных: х и t. Если найти производную от y(x,t) по времени, полагая х постоянной, то эта частная производная

показывает скорость изменения колеблющейся величины в данной точке среды. Производная же от у по х при постоянном t

есть разность значений колеблющейся величины, рассчитанная на единицу расстояния между точками среды (Δx =x2x1), т. е. показывает, как резко увеличивается или уменьшается у вдоль оси ОХ (в данный момент времени t) колеблющаяся величина.

Найдем частные производные от колеблющейся величины у по времени при постоянном х:

Если y есть смещение частиц среды при колебаниях, то υ и а будут скоростью и ускорением этих частиц при их колебательном движении в точке с координатой х. Амплитудные значения этих величин связаны между собой:

Частные производные от у по х при постоянном t будут равны:

,

.

(3.5)

это и есть дифференциальное уравнение плоской бегущей волны, распространяющейся по оси ОХ. Оно получено нами из уравнения волны (3.3). Однако можно сделать и обратное заключение: если какая-нибудь физическая величина у = у (х, t) зависит от времени и координат так, что ее частные производные удовлетворяют уравнению (3.5), то величина у распространяется в среде в виде плоской волны [см. уравнение (3.3)] со скоростью

и частотой колебаний

Звук

Напомним физическую природу звуковых явлений. Как известно, для получения чистого звука пользуются камертоном*. Когда камертон издает звук, то шарик отскакивает от его ножки, так как она колеблется (рис. 4.1). Опыт показывает, что источником звука всегда является какое-либо колеблющееся тело, которое в процессе своих колебаний создает в окружающей среде механические волны (рис. 4.2). Когда эти волны достигают уха человека, то они приводят в вынужденные колебания барабанную перепонку внутри уха, и человек ощущает звук. Механические волны, которые вызывают у человека ощущение звука, называют звуковыми.

Звуковые волны в воздухе состоят из сгущений и разрежений, т. е. являются продольными. Ясно, что ощущение звука человек может получить только в том случае, когда между источником звука и ухом человека имеется среда, в которой могут распространяться звуковые волны..

Изучение звуковых явлений показало, что далеко не всякие механические волны могут вызвать ощущение звука у человека. Оказывается, что только волны, частота колебаний которых находится в пределах от 16 до 20 000 Гц, являются звуковыми. Это знает всякий, кто интересуется музыкой вообще и воспроизведением музыки в частности. Главный параметр любого уважающего себя музыкального центра — полоса пропускания. Чем она ближе к упомянутой, тем центр лучше, или дороже[2]. Заметим, что верхняя и нижняя границы частот этих колебаний у отдельных людей могут немного отличаться от указанных выше.

Итак, человек ощущает звук, если выполняются следующие четыре условия:

1) имеется источник звука;

2) имеется упругая среда между ухом и источником звука;

3) частота колебаний источника звука находится между 16 и 20000 Гц;

4) мощность звуковых волн достаточна для получения ощущения звука у человека.

Итак, при распространении в среде упругих (в частности, звуковых) колебаний частицы среды совершают колебательное движение относительно своих положений равновесия. Можно было бы описывать волновое движение, учитывая только смещения и скорости частиц среды. Однако при наличии беспорядочного теплового движения частиц пользоваться таким описанием неудобно. Поэтому принято упругую (и частности звуковую) волну характеризовать периодическими изменениями давления и плотности, которые происходят при последовательных сжатиях и растяжениях (расширениях, разряжениях) среды. Обозначим, например, давление и плотность воздуха в равновесном состоянии через р0 и ρ0 а их мгновенные значения в данном месте через р и ρ. Тогда ,для описания звуковой волны в воздухе можно интересоваться периодическими изменениями избыточного давления Δр=р-р0 или избыточной плотности Δρ =ρ –ρ0 .

Выясним, при каких условиях в упругих средах возможны гармонические волны вида (3.3). Выделим перпендикулярно к ОХ некоторую площадку S (рис. 4.3) и слой малой толщины Δl. Допустим, что в положении I избыточное давление слева равно Δр1, а справа , следовательно, на выделенный элемент среды будет действовать результирующая сила Δ F=S ( Δ р1 – Δ р2 ) = . Масса этого элемента Δm = ρ S Δl, где ρ — средняя плотность среды в объеме элемента. Тогда, согласно второму закону Ньютона рассматриваемый элемент среды будет иметь ускорение

(знак «минус» означает, что если избыточное давление Δр в положительном направлении х возрастает, то сила ΔF и ускорение а будут направлены в обратную сторону).

Так как смещение частиц, среды у зависит от двух переменных: времени и координаты, то ускорение элемента запишем в виде ; тогда

(4.1)

Исследуем правую часть этой формулы. Если бы все частицы среды, находящиеся в рассматриваемом элементе, имели бы одинаковое смещение у, то объем элемента, следовательно, и давление р и плотность ρ внутри него оставались бы постоянными. В этом случае правая часть уравнения (4.1) будет равна нулю и упругой волны в среде не обнаружится. Поэтому необходимо допустить, что при переходе из положения I в II одна грань рассматриваемого элемента среды смещается на у, а другая — на у + Δу. При таком перемещении объем элемента изменится, вследствие чего давление р станет функцией от координаты х и правая часть уравнения (4.1) будет отлична от нуля. Однако в формуле (4.1) имеются две переменные величины у и р; если исключить одну из них, например давление р, то получим дифференциальное уравнение для смещения элементов среды от положения равновесия. Для этой цели сначала учтем, что величину Δу следует полагать пропорциональной толщине элемента среды Δl:

,

где показывает, какое изменение смещения у приходится на единицу длины вдоль оси ОХ.

Тогда относительное изменение объема элемента будет равно:

.

Масса среды в элементе объема не изменяется, поэтому относительное увеличение плотности будет равно относительному уменьшению объема элемента, т.е.

.

Теперь для того, чтобы рассчитать изменение избыточного давления Δр внутри элемента, необходимо знать зависимость Δр от ρ или ε.

Если среда – твердое тело, то при малых деформациях можно воспользоваться законом Гука: р= εЕ. Относительное удлинение или сжатие элемента объема будет (для плоской волны S = const) совпадать с относительным изменением его объема; напряжение сжатия или растяжения можно полагать равным среднему значению Δр внутри элемента, причем увеличение Δр сопровождается уменьшением объема элемента, поэтому

; .

Подставив в формулу (4.1), получим дифференциальное уравнение плоской волны, распространяющейся в твердых телах:

(4.2)

Сравнивая уравнения (4.2 ) и (3.4 ), замечаем, что величину Е/ρ следует отождествить с квадратом скорости распространения волны:

(4.3)

Для железа, например, Е=2·10 11 H/м 2 , ρ=7800 Кг/м 3 , и вычисляя получаем скорость звука V≈5100 м/c.

В газах процессы сжатия и расширения описываются уравнением

где р – давление, V — удельный объем , а γ – некоторая постоянная величина, зависящая от того как происходят процессы сжатия и расширения. Из этого уравнения следует:

.

Если избыточное давление мало по сравнению с давлением газа р0 (а так при обычных условиях и бывает) то

;

Подставив это выражение для в формулу (4.1), вновь получим дифференциальное уравнение (3.4) плоской волны, причем скорость распространения оказывается равной (полагая )

(4.4)

Дифференциальное уравнение плоской волны и формулы (4.3) и (4.4) для скоростей распространения получены при предположении, что избыточные давления Δр и плотности Δρ малы. Найдем изменение этих величин со временем; для любой среды, полагая , получим для плотности:

(4.5)

где через Δρ0 обозначена амплитуда колебаний плотности среды в волне:

Для колебаний давления Δ р также получаются формулы, одинаковые для всех сред:

; Δ р0=ρ0 υ0 с (4.6)

Таким образом, Δ р и Δ ρ пропорциональны не смещению частиц среды у, а их скоростям υ.

Из уравнений (4.5) и (4.6) можно получить общее выражение для скорости распространения плоской волны в упругой среде

или

Дата добавления: 2015-06-12 ; просмотров: 1291 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Коэффициент k в уравнении волны

4.1. Механические колебания.

4.2. Электрические колебания.
4.3. Упругие волны. Акустика.
4.4. Электромагнитные волны. Излучение.
_______________________________________________________________________________________________

4.1. Механические колебания.

4.1.1. Гармонические колебания.

4.1. 1 -1. Частица совершает гармоническое колебание с амплитудой А и периодом Т = 12 с. Найти время t ₁ , за которое смещение частицы изменяется от 0 до А/2.

Решение:

Т = 12 с
х(0) = 0
х( t ₁) = А/2 (1)
t ₁ – ?
Так как начальное положение частицы х(0) = 0, то частица колеблется по закону синуса с начальной фазой ϕ ₀ = 0:
x = Asin ( ωt + ϕ ₀) или
x = Asinωt , (2)
где ω = 2 π / T – круговая частота.
С учётом условия (1), запишем (2) в виде:
х( t ₁) = Asin ( ωt ₁); А/2 = Asin ( (2 π / T ) t ₁ ); 1/2 = sin (2 πt ₁/ T ); 2 πt ₁/ T = π /6. Отсюда
t ₁ = T /12.
t₁ = 12/12 = 1 с.
Ответ: t₁ = T/12 = 1 c.

4.1.1-2. Определить период Т простых гармонических колебаний диска радиусом R = 40 см около горизонтальной оси, проходящей через образующую диска.

где − I момент инерции диска относительно оси вращения, проходящей через точку подвеса А (см. рис.); x = AO = R − расстояние от точки подвеса до центра тяжести О диска; m − масса диска; g = 9,8 м/с² − ускорение свободного падения.
Момент инерции I ₀ диска относительно оси симметрии диска:
I ₀ = mR
²/2.
По теореме Штейнера:
I = I₀ + mR². Имеем
I = mR²/2 + mR² = 3mR²/2. Тогда по (1)

Решение:
r ( t ) = A ( icosωt + jsinωt ) (1)
A = 0,5 м
ω = 5 с⁻¹
v − ?
an − ?
Представим (1) в виде:
r ( t ) = iAcosωt + jAsinωt (1*)
Радиус вектор r ( t ) точки: r ( t ) = ix + jy , где x , y − проекции радиус вектора соответственно на оси OX и OY ; i , j − единичные векторы (орты), направленные соответственно по оси OX и OY . Тогда (1*) примет вид
ix + jy = iAcosωt + jAsinωt ,
отсюда получим два уравнения
x = Acosωt , (*)
y = Asinωt . (**)
Возведём их в квадрат
x ² = A ² cos ² ωt ,
y ² = A ² sin ² ωt .
Сложим эти уравнения
x ² + y ² = A ² cos ² ωt + A ² sin ² ωt или x ² + y ² = A ²( cos ² ωt + sin ² ωt ). Отсюда, т.к. cos ² ωt + sin ² ωt = 1, получим уравнение траектории движения точки
x ² + y ² = A ². (2)
Уравнение (2) − это уравнение окружности радиусом R = A = 0,5 м с центром в начале координат (см. рис.).
Найдём проекции скорости v x и vy . Для этого продифференцируем x и y из (*) и (**) по времени t :
vx = xt ʹ = ( Acosωt ) t ʹ = — Aωsinωt ;
vy = yt ʹ = ( Asinωt ) t ʹ = Aωcosωt .
Тогда квадрат скорости
v ² = vx ² + vy ² или v ² = (- Aωsinωt )² + ( Aωcosωt )² или v ² = A ² ω ²( sin ² ωt + cos ² ωt ) или v ² = A ² ω ². Отсюда модуль скорости v :
v = Aω . (3)
v = 0,5·5 = 2,5 м/с².
Модуль нормального ускорения an : an = v ²/ R или, с учётом (3) и R = A , получим an = A ² ω ²/ A или
an = Aω ².
an = 0,5·5² = 12,5 м/с².
Ответ: траектория − окружность радиусом R = A = 0,5 м с центром в начале координат, v = Aω = 2,5 м/с², an = Aω ² = 12,5 м/с².

_______________________________________________________________________________________________

4.1.2. Свободные затухающие колебания.

4.1.2-1.
Амплитуда затухающих колебаний уменьшилась в n = 100 за 15 с. Чему равен коэффициент затухания β ?

Решение:

t = 15 c
n = 100
A = A ₀/ n (*)
β – ?
Зависимость амплитуды А затухающих колебаний от времени t :
A = A ₀ e — β t , (1)
где A ₀ – начальная амплитуда; β – коэффициент затухания.
Имеем из (1) и (*):
A ₀/ n = A ₀ e — β t ; 1/ n = e — β t ; e β t = n ; βt = ln ( n ) отсюда
β = ln ( n )/ t .
β = ln(100)/15 = 0,307 1/c.
Ответ: β = ln(n)/t = 0,307 1/c.

4.1.2-2. Найти логарифмический декремент затухания тонкого стержня, подвешенного за один из его концов, если за промежуток времени t = 5 мин его полная механическая энергия уменьшилась в n = 4 · 10 ² раз. Длина стержня L = 50 см.

Решение:
t = 5 мин = 300 с
n = 400
L = 0,5 м
λ − ?
В данном случае стержень − это физический маятник.
Логарифмический декремент затухания λ
λ = βT
, (1)
где β – коэффициент затухания, T − период колебаний стержня.

1. Найдём коэффициент затухания β .
Связь частот ω и ω₀:
ω² = ω₀² — β². (2)
ω – частота затухающих колебаний; ω ₀ – собственная частота колебаний.
Зависимость от времени t полной механической энергии Е физического маятника:
Е =
E ₀ e -2 βt ,
где E ₀ – начальная (при t = 0) полная механическая энергия.
Отсюда имеем
n = Е ₀/ Е = Е ₀/( E ₀ e -2 βt ) = 1 /( e -2 βt ) = e 2 βt .
Получили n = e 2 βt . Прологарифмируем это равенство Ln ( n ) = 2 βt . Отсюда
β = Ln ( n )/(2 t ). (3)

2. Найдём период Т затухающих колебаний.
Оценим коэффициент β 2 по (3).
β = Ln (400)/(2 · 300) = 0,009986, отсюда
β ² = (0,009986)² ≈ 0,0000997.
Собственная частота колебаний физического маятника:

Подставим в (1) найденные β из (3) и Т из (4**) и, после упрощения, получим

4.1.2-3. Логарифмический декремент затухания тела, колеблющегося с частотой 50 Гц, равен 0,02. Определите: время, за которое амплитуда колебаний тела уменьшится в 20 раз; число колебаний тела, чтобы произошло подобное уменьшение амплитуды.

Решение:
ν = 50 Гц
λ = 0,02
n = 20
t − ?
N − ?
1. Пусть β – коэффициент затухания; T = 1/ ν – период, ν – частота колебаний. Логарифмический декремент затухания λ :
λ = βT
или λ = β / ν , отсюда
β = λν . (1)
Амплитуда А затухающих колебаний
A = A ₀· e — βt ,
где A ₀ − начальная амплитуда (при t = 0).
Подставим сюда из условия задачи A = A ₀/ n :
A ₀/ n = A ₀· e — βt ,
отсюда e βt = n и, после логарифмирования, βt = Ln ( n ), отсюда
t = ( Ln ( n ) )/ β и, с учётом (1),
t = ( Ln ( n ) )/( λν ). (2)

2.
Число колебаний N за время t :
N = t / T = tν = ( и, с учётом (2), ) = ν ( Ln ( n ) )/( λν ) или
N = ( Ln ( n ) )/ λ . (3)

3.
Вычисления по формулам (2) и (3):
t = ( Ln (20) )/(0,02·50) ≈ 3 с.
N = ( Ln (20) )/0,02 ≈ 150.
Ответ: t = ( Ln ( n ) )/( λν ) ≈ 3 с; N = ( Ln ( n ) )/ λ ≈ 150.

4.1.2-4. Составьте дифференциальное уравнение гармонических свободных затухающих крутильных колебаний механической системы.

Решение:
Пусть система (например, тонкий однородный диск, подвешенный в горизонтальном положении к упругой нити) совершает крутильные колебания относительно закреплённой оси Z (ось нити). Пусть на диск действует упругая сила, проекция момента которой на ось Z равна
Mz = — kϕ , (1)
где k − постоянная, ϕ − угол поворота из положения равновесия. Знак “минус” указывает на то, что при отклонении системы на угол ϕ , момент упругой силы возвращает систему к положению равновесия. Поместим диск в вязкую среду ( например, жидкость ). Момент силы сопротивления Mc , действующий на диск, пропорционален угловой скорости ϕ ʹ:
M c = — ηϕ ʹ, (2)
где η − постоянная.
Уравнение динамики вращательного движения диска имеет вид
Iϕ ʹʹ = Mz + M c , (3)
где I – момент инерции диска относительно оси вращения.
С учётом (1) и (2), уравнение (3) примет вид Iϕ ʹʹ = — kϕ — ηϕ ʹ, отсюда
ϕ ʹʹ + ( η / I ) ϕ ʹ + ( k / I ) ϕ = 0.
Применив обозначения 2 β = η / I , ω ₀² = k / I , перепишем последнее уравнение:
ϕ ʹʹ + 2 βϕ ʹ + ω ₀² ϕ = 0.
Это дифференциальное уравнение описывает затухающие крутильные колебания механической системы.
Ответ: ϕ ʹʹ + 2 βϕ ʹ + ω ₀² ϕ = 0.

4.1.2-5. Найти добротность Q осциллятора, у которого отношение резонансной частоты ωрез к частоте затухающих колебаний ω равно η.

Решение:
ωрез/ω = η (*)
Q − ?
Пусть β − коэффициент затухания, ω₀ − собственная частота колебаний, T = 2π/ω − период затухающих колебаний, λ = βT = 2πβ/ω − логарифмический декремент затухания. Тогда добротность Q:
Q = π/λ = π/(2πβ/ω), или
Q = ω/(2β). (1)
Связь частот ω и ω₀:
ω² = ω₀² — β². (2)
Формула для резонансной частоты ωрез:
ωрез² = ω₀² — 2β². (3)
Из (2) вычтем (3)
ω² — ωрез² = (ω₀² — β²) — (ω₀² — 2β²), или
ω² — ωрез² = ω₀² — β² — ω₀² + 2β², или
ω² — ωрез² = β². (**)
С учётом условия (*) имеем ωрез = ωη. Тогда (**) примет вид
ω² — ω²η² = β², или
ω²(1 — η²) = β², отсюда

___________________________________________________________________________________

4.1.3. Вынужденные колебания. Резонанс.

4.1.3-1. Осциллятор массы m движется по закону x = Asinωt под действием вынуждающей силы Fₓ = F₀cosωt. Найти коэффициент затухания β осциллятора.

Решение:
m,
x = Asinωt,
Fₓ = F₀cosωt,
β − ?
Установившееся смещение х(t) осциллятора при вынужденных колебаниях:
x = Acos(ωt — ϕ), (1)

ω₀ − собственная частота колебаний осциллятора,
f₀ = F₀/m. (*)
Так как по условию смещение х(t) осциллятора x = Asinωt, то из (1) следует: ϕ = π/2
(т. к. cos(ωt — π/2) = sinωt). Тогда из (3) имеем:

где f₀ = F ₀/ m , m − масса осциллятора , β − коэффициент затухания, ω₀ − собственная частота колебаний, ω − частота вынужденных колебаний.
При постоянной амплитуде вынуждающей силы F ₀ (и, следовательно, постоянной f ₀) из (*) при двух разных частотах ω₁ и ω₂ получаем две амплитуды А₁ и А₂ вынужденных колебаний:

4.2. Электрические колебания.

4.2-1. Небольшая магнитная стрелка совершает малые колебания вокруг оси, перпендикулярной направлению внешнего магнитного поля. При изменении индукции этого поля период колебаний стрелки уменьшился в η = 5 раз. Во сколько раз и как изменилась индукция поля? Затухание колебаний пренебрежимо мало.

Решение:
T ₁/ T ₂ = η = 5
B ₂/ B ₁ − ?
Момент сил М, действующий на стрелку со стороны магнитного поля
М = [ B · P m ], где P m − вектор магнитного момента стрелки.
Модуль момента сил
М = B · P m · sinϕ , где ϕ – угол между векторами B и P m .
При малых колебаниях угол ϕ очень мал и sinϕ ≈ ϕ . Тогда
М = B · P m · ϕ .
При повороте стрелки на угол ϕ возникает момент сил М , стремящийся вернуть стрелку в положение равновесия, т.е. М = — B · P m · ϕ . Если J – момент инерции стрелки относительно оси вращения, то основное уравнение динамики вращательного движения примет вид
Jϕ ’’ = M или Jϕ ’’ = — B · P m · ϕ отсюда
ϕ ’’ + ( B · P m / J ) · ϕ = 0. (1)
Если ω – циклическая частота колебаний, то сравнивая (1) с уравнением гармонических колебаний
ϕ ’’ + ω ² ϕ = 0, получим
ω ² = B · P m / J , отсюда
ω = √( B · P m / J ).
Тогда период T колебаний
T = 2 π / ω или
T = 2 π √( J /( B · P m ) ). (2)
На основе (2) для разных B ₁ и B ₂ получим соответствующие T ₁ и T ₂
T ₁ = 2 π √( J /( B ₁ · P m ) )
T ₂ = 2 π √( J /( B ₂ · P m ) ).
Отсюда
T ₁/ T ₂ = √( B ₂/ B ₁) и отсюда
B ₂/ B ₁ = ( T ₁/ T ₂)² = η ² = 25. Итак
B ₂/ B ₁ = η ² = 25.
Ответ: индукция магнитного поля увеличится в η ² = 25 раз.

4.2-2. Индуктивность катушки равна 0,125 Гн. Уравнение колебаний силы ток в ней имеет вид:
i = 0,4 cos (1000 t ), где все величины выражены в системе СИ. Определить амплитуду напряжения на катушке.

Решение:
L = 0,125 Гн
i = 0,4 cos (1000 t ). (1)
Um − ?
Уравнение колебаний силы тока в катушке имеет вид:
i = Imcos ( ωt ). (2)
Из (1) и (2) имеем
Im = 0,4 А − амплитуда силы тока в катушке; ω = 1000 с⁻¹− частота.
Индуктивное сопротивление катушки: X L = ωL .
По закону Ома
Im = Um / X L , отсюда
Um = X L · Im или
Um = ωL · Im .
Um = 1000·0,125·0,4 = 50 В.
Ответ: Um = 50 В.

4.2-3. Электрический колебательный контур состоял из последовательно соединенных катушки с индуктивностью L = 0,8 Гн и конденсатора емкостью С. Сопротивление катушки и соединительных проводов было равно R = 2000 Ом. После того, как часть витков в катушке замкнулась накоротко, индуктивность ее уменьшилась в n = 7 раз, частота собственных колебаний в контуре возросла в k = 3 раза, а коэффициент затухания этих колебаний не изменился. Определить емкость конденсатора .

Решение:
L = 0,8 Гн
R = 2000 Ом
L ₂ = L / n
n = 7
ω ₂ = kω
k = 3
β = const
C − ?
Коэффициент затуханий β = R /(2 L ).
ω и ω ₂ − начальная и конечная частоты собственных колебаний в контуре, где
ω = √( 1/( LC ) — β ² ) = √( 1/( LC ) — R ²/(4 L ²) );
ω ₂ = √( 1/( L ₂ C ) — β ² ) = √( n /( LC ) — R ²/(4 L ²) ).
Возведём в квадрат равенство ω ₂ = kω , получим ω ₂² = k ² ω ² или
n /( LC ) — R ²/(4 L ²) = k ²( 1/( LC ) — R ²/(4 L ²) ), отсюда
C = 4 L ( k ² — n )/( R ²( k ² — 1) ).
C = 4·0,8·(3² — 7)/( 2000²·(3² — 1) ) = 2·10⁻⁷ Ф.
Ответ: C = 4L(k² — n)/( R²(k² — 1) ) = 2·10⁻⁷ Ф.

4.2-4. Ток в колебательном контуре зависит от времени как I = Imsinω₀t, где Im = 9,0 мА, ω₀ = 4,5·10⁴ с⁻¹. Ёмкость конденсатора С = 0,50 мкФ. Найти индуктивность контура и напряжение на конденсаторе в момент t = 0.

Решение:

I = Imsinω₀t (*)
Im = 9·10⁻³ А
ω₀ = 4,5·10⁴ с⁻¹
С = 0,5·10⁻⁶ Ф
L − ?
U(0) − ?
1). Собственная частота ω₀ колебательного контура

1
L = ––––– . (1)
ω₀²C
2). Закон сохранения энергии в колебательном контуре:
LI²/2 + CU²/2 = LIm²/2
или, с учётом (*),
L(Imsinω₀t)²/2 + CU²/2 = LIm²/2.
Отсюда при t = 0 (т.к. sinω₀0 = 0) получим напряжение U(0) = Um на конденсаторе в момент времени t = 0 ( Um − максимальное напряжение ):
CU²(0) = LIm²
и, подставляя сюда L из (1), получим
Im²
CU²(0) = ––––– или
ω₀²C
Im
U(0) = Um = –––– . (2)
ω₀C
Вычисления по формулам (1) и (2 ):
1
L = –––––––––––––––– = 0,001 Гн = 1 мГн.
(4,5·10⁴)²·0,5·10⁻⁶
9·10⁻³
U(0) = Um = –––––––––––––– = 0,4 В.
4,5·10⁴·0,5·10⁻⁶

4.3. Упругие волны. Акустика.

4.3-1. По шнуру слева направо бежит со скоростью v незатухающая гармоническая волна. При этом поперечное смещение точки О шнура изменяется по закону y = Acos ( ωt ). Как зависит от времени смещение точки шнура, находящейся правее точки О на расстоянии x от нее?

Решение:

y = Acos ( ω ( t — x / v ) ).
Ответ: y = Acos ( ω ( t – x / v ) ).

4.3-2. Уравнение плоской звуковой волны имеет вид ξ = 60 cos (1800 t — 5,3 x ). где ξ – в мкм, t – в секундах, х – в метрах .
Найти:
а) отношение амплитуды смещения частиц среды к длине волны;
б) амплитуду колебаний скорости частиц среды и ее отношение к скорости распространения волны;
в) амплитуду колебаний относительной деформации среды и её связь с амплитудой колебаний скорости частиц среды.

а) Уравнение плоской синусоидальной волны
ξ = Acos(ωt – kx). (2)
Из (1) и (2) следует
A = 60 ·10 ⁻ ⁶ м – амплитуда колебаний частиц среды,
ω = 1800 1/с – циклическая частота,
k = 5,3 1/м – волновое число.
k = 2π/λ, отсюда λ = 2π/k. Тогда
A/λ = A/(2π/k) или
A/λ = Ak/(2π).
A / λ = 60 ·10 ⁻ ⁶ · 5,3/(2 · 3,14) = 5,1 ·10 ⁻ ⁵ .

б) Амплитуда колебаний скорости частиц среды
V m = Aω . (*)
Vm = 60 ·10 ⁻ ⁶ · 1800 = 0,11 м/с. = 11 см/с.
Скорость распространения волны
v = ω / k . (3)
Тогда ( см. (*) )
Vm/v = Aω / ( ω / k ) = A k .
Vm/v = A k .
Vm/v = 60 ·10 ⁻ ⁶ · 5,3 = 3,2 ·10 ⁻ ⁴ .

в) Относительную деформацию среды найдём дифференцируя (2) по х:
∂ ξ/ ∂ x = ( Acos(ωt – kx) )x ʹ = — Aksin (ωt – kx).

Ответ: a) A/λ = 5,1 ·10 ⁻ ⁵ ;
б)
Vm = 0,11 м/с, Vm/v = 3,2 ·10 ⁻ ⁴;
в)
( ∂ ξ/ ∂ x)m = 3,2 ·10 ⁻ ⁴, V m = v · (d ξ/dx)m , где v = 340 м/с – скорость волны .

4.3-3. Что такое амплитуда колебаний скорости частиц среды?

Решение:
Объясню на простом примере. В озере на воде поплавок. Бросьте в воду камешек, от него во все стороны пойдут волны. Поплавок колеблется на волнах. Скорость колебаний поплавка − это скорость колебаний частиц среды (воды). Максимальная скорость колебаний поплавка − это амплитуда колебаний скорости частиц среды.
Амплитуда колебаний скорости частиц среды
Vm = Aω ( A — амплитуда, ω — циклическая частота).
Скорость распространения волны
v = ω / k ( k — волновое число).
A , ω , k определяют из общего вида уравнения бегущей плоской синусоидальной волны
ξ = Acos ( ωt – kx ).

4.3-4. Точечный изотропный источник испускает звуковые колебания с частотой ν = 1,45 кГц. На расстоянии r₁ = 5 м от источника амплитуда смещения частиц среды А₁ = 50 мкм, а в точке А, находящейся на расстоянии r₂ = 10 м от источника, амплитуда смещения в η = 3 раза меньше А₁. Найти:
а) коэффициент затухания волны γ;
б) амплитуду колебаний скорости частиц среды в точке А.

Решение:
ν = 1450 Гц
r₁ = 5 м
А₁ = 50·10⁻⁶ м
r₂ = 10 м
А₂ = А₁/η (η = 3) (*)
а) γ − ?
б) Vm − ? (в точке А)
От данного точечного источника распространяются сферические волны. Для однородной поглощающей среды уравнение сферической волны:

(1)
где ξ − смещение частиц среды; ω = 2πν − циклическая частота; k − волновое число.

а). Из (1) выпишем амплитуду A смещения частиц среды (множитель перед косинусом):
A = (A₀/r)·e⁻ᵞʳ.
Отсюда для r = r₁ и r = r₂ получаем амплитуды смещения частиц среды A₁ и A₂ соответственно
A ₁ = ( A ₀ / r ₁ ) · e ⁻ ᵞ r₁ , (**)
A ₂ = ( A ₀ / r ₂ ) · e ⁻ ᵞ r ₂ . (***)
Делим (**) на (***) и, с учётом (*), получаем:

η = ( r ₂ / r ₁ ) · e ᵞ ⁽ r ₂ ⁻ r₁ ⁾ отсюда η r ₁ / r ₂ = e ᵞ ⁽ r ₂ ⁻ r₁ ⁾ , отсюда, по определению логарифма, имеем

ln ( η r ₁ / r ₂ ) = γ( r ₂ — r ₁ ), отсюда

γ = ln(3 · 5 /10 )/(10 — 5 ) ≈ 0,08 м ⁻ ¹ .

б). Для нахождения скорости смещения частиц среды V найдём частную производную по времени t от (1):
V = ∂ ξ / ∂ t = ( A ₀ / r ) · e ⁻ ᵞ ʳ ·( — ω sin ( ω t — kr ) ).
С учётом ω = 2πν, имеем
V = — ( 2 π ν A ₀ /r ) ·e ⁻ ᵞ ʳ ·sin ( ω t-kr ) .
Отсюда амплитуда колебаний скорости частиц среды Vm (множитель перед синусом):

4.3-5. Плоская звуковая волна, частота которой 100 Гц и амплитуда 5 мкм, распространяется со скоростью 300 м\с в воздухе, плотность которого равна 1 , 2 кг\м ³ . Определить интенсивность волны.

Решение:
ν = 100 Гц
а = 5·10⁻⁶ м
V = 300 м\с
ρ = 1,2 кг\м³
I − ?
Интенсивность I звуковой волны
I = ρ а² ω ² V /2 и т.к. ω = 2 πν , то
I = ρ а²(2 πν )² V /2.
I = 1,2·(5·10⁻⁶)²·(2·3,14·100)²·300/2 = 1,77·10⁻³ Вт/м².
Ответ: I = 1,77·10⁻³ Вт/м².

4.3-6. Стальная струна длины l = 100 см и диаметра d = 0,50 мм даёт основной тон частоты ν = 256 Гц. Найти силу её натяжения.

Решение:
l = 1 м
d = 0,5·10⁻³ м
ν = 256 Гц
ρ = 7800 кг/м³ (плотность стали)
F − ?
В закреплённой с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны. Основной тон частоты ν колебаний струны:
ν = V/2l, отсюда
V = 2lν, (1)
где

− фазовая скорость поперечных волн в струне. Отсюда

F = V²ρ₁ , (2)
где ρ₁ = m/l − линейная плотность струны, m = ρV₀ − масса струны, V₀ = (πd²/4)l = πd²l/4 − объём струны.
Имеем: ρ₁ = ρV₀/l = ρ(πd²l/4)/l = ρπd²/4. Получили
ρ₁ = ρπd²/4. (3)
Подставляя в (2) V из (1) и ρ₁ из (3), получим силу натяжения F струны
F = (2lν)²ρπd²/4, или
F = πρ(lνd)².
F = 3,14·7800· (1·256·0,5·10⁻³)² ≈ 401,3 Н.
Ответ: F = πρ(lνd)² ≈ 401,3 Н.

_______________________________________________________________________________________________

4.4. Электромагнитные волны. Излучение.

4.4-1. Электромагнитная волна с частотой 6 · 10 ¹⁴ Гц распространяется в стекле, показатель преломления которого 1,5. Какова скорость волны в стекле и значение волнового числа?

Решение:

ν = 6 · 10¹⁴ Гц
n = 1,5
c = 3 · 10⁸ м/с (скорость света в вакууме)
V – ? k – ?
Скорость V волны в стекле:
V = c / n . (1)
Длина волны в стекле:
λ = V / ν = c /( nν ). (*)
Волновое число k:
k = 2 π / λ или с учётом (*)
k = 2 πnν /с. (2)
Вычисления по (1), (2)
V = 3 · 10⁸/1,5 = 2 · 10⁸ м/с.
k = 2 · 3,14 · 1,5 · 6 · 10¹⁴/(3 · 10⁸) = 1,88 · 10⁷ (1/м).
Ответ: V = 2 · 10⁸ м/с; k = 1,88 · 10⁷ (1/м).

4.4-2. Определить показатель преломления призмы из парафина , если его диэлектрическая проницаемость Ԑ = 2 и магнитная проницаемость μ = 1.

Решение:
Ԑ = 2
μ = 1
n – ?
Показатель преломления среды
n = C / V . (1)
С – скорость света в вакууме.
Скорость света в среде
V = C /√( Ԑμ ). (2)
Из (1) и (2) имеем
n = √( Ԑμ ).
n = √(2·1) = 1,41.
Ответ: n = 1,41.
___________________________________________________________________________________


источники:

http://helpiks.org/3-81368.html

http://www.sites.google.com/site/viktortsekunov/services/fizika/4-kolebania-i-volny