Когда нормальная система является системой линейных уравнений

23. Нормальные системы линейных однородных дифференциальных

Уравнений с постоянными коэффициентами.

При рассмотрении систем дифференциальных уравнений ограничимся случаем системы трех уравнений (n = 3). Все нижесказанное справедливо для систем произвольного порядка.

Определение. Нормальная система дифференциальных уравнений c постоянными коэффициентами называется Линейной однородной, если ее можно записать в виде:

(2)

Решения системы (2) обладают следующими свойствами:

Решения системы ищутся в виде:

Подставляя эти значения в систему (2) и перенеся все члены в одну сторону и сократив на Ekx, получаем:

Для того, чтобы полученная система имела ненулевое решение необходимо и достаточно, чтобы определитель системы был равен нулю, т. е.:

В результате вычисления определителя получаем уравнение третьей степени относительно K. Это уравнение называется Характеристическим уравнением И имеет три корня K1, K2, K3. Каждому из этих корней соответствует ненулевое решение системы (2):

Линейная комбинация этих решений с произвольными коэффициентами будет решением системы (2):

Пример. Найти общее решение системы уравнений:

Составим характеристическое уравнение:

Решим систему уравнений:

Для K1:

Полагая (принимается любое значение), получаем:

Для K2:

Полагая (принимается любое значение), получаем:

Общее решение системы:

Этот пример может быть решен другим способом:

Продифференцируем первое уравнение:

Подставим в это выражение производную У¢ =2X + 2Y из второго уравнения.

Подставим сюда У, выраженное из первого уравнения:

Обозначив , получаем решение системы:

Пример. Найти решение системы уравнений

Эта система дифференциальных уравнений не относится к рассмотренному выше типу, т. к. не является однородным (в уравнение входит независимая переменная Х).

Для решения продифференцируем первое уравнение по Х. Получаем:

Заменяя значение Z из второго уравнения получаем: .

С учетом первого уравнения, получаем:

Решаем полученное дифференциальное уравнение второго порядка.

Общее решение однородного уравнения:

Теперь находим частное решение неоднородного дифференциального уравнения по формуле

Общее решение неоднородного уравнения:

Подставив полученное значение в первое уравнение системы, получаем:

Пример. Найти решение системы уравнений:

Составим характеристическое уравнение:

Если принять g = 1, то решения в этом случае получаем:

Если принять g = 1, то получаем:

Если принять g = 3, то получаем:

Общее решение имеет вид:

Элементы теории устойчивости.

Теория устойчивости решений дифференциальных уравнений является одним из разделов Качественной теории дифференциальных уравнений, которая посвящена не нахождению какого – либо решения уравнения, а изучению характера поведения этого решения при изменении начальных условий или аргумента.

Этот метод особенно важен, т. к. позволяет делать вывод о характере решения без непосредственного нахождения этого решения. Т. е. даже в тех случаях, когда решение дифференциального уравнения вообще не может быть найдено аналитически.

Пусть имеется некоторое явление, описанное системой дифференциальных уравнений:

(1)

И начальные условия:

Для конкретного явления начальные условия определяются опытным путем и поэтому неточны.

Теорема. (о непрерывной зависимости решения от начальных условий)

Если правая часть дифференциального уравнения Непрерывна и по переменной у имеет ограниченную частную производную на области прямоугольника, ограниченного , то решение

, удовлетворяющее начальным условиям , непрерывно зависит от начальных данных, т. е. для любого , при котором если

то при условии, что

где

Эта теорема справедлива как для одного дифференциального уравнения, так и для системы уравнений.

Определение. Если — решение системы дифференциальных уравнений, то это решение называется Устойчивым по Ляпунову, если для любого , такое, что для любого решения той же системы, начальные условия которого удовлетворяют неравенствам

(Ляпунов Александр Михайлович (1857 – 1918) академик Петерб. АН)

Т. е. можно сказать, что решение j(t) устойчиво по Ляпунову, если близкие к нему по начальным условиям решения остаются близкими и при T ³ T0.

Если , то решение j(t) называется Асимптотически устойчивым.

Исследование на устойчивость по Ляпунову произвольного решения системы Можно свести к исследованию на устойчивость равного нулю решения некоторой другой системы, которая получена из данной заменой неизвестных функций:

(2)

Система (2) имеет тривиальное (равное нулю) решение

Теорема. Решение системы (1) устойчиво по Ляпунову тогда и только тогда, когда устойчиво по Ляпунову тривиальное решение системы (2).

Это тривиальное решение называется Положением равновесия Или Точкой покоя.

Определение. Точка покоя Системы (2) устойчива по Ляпунову, если для любого такое, что из неравенства

.

Теорема. (Теорема Ляпунова). Пусть задана система

Имеющая тривиальное решение .

Пусть существует дифференцируемая функция , удовлетворяющая условиям:

1) ³0 и V = 0 только при у1 = у2 = … = уN =0, т. е. функция V Имеет минимум в начале координат.

2) Полная производная функции V Вдоль фазовой траектории (т. е. вдоль решения Yi(T) системы (1)) удовлетворяет условию:

при

Тогда точка покоя устойчива по Ляпунову.

Если ввести дополнительное требование, чтобы вне сколь угодно малой окрестности начала координат выполнялось условие

Где B — постоянная величина, то точка покоя асимптотически устойчива.

Функция V называется Функцией Ляпунова.

Классификация точек покоя.

Рассмотрим систему двух линейных дифференциальных уравнений с постоянными коэффициентами

Характеристическое уравнение этой системы имеет вид:

Рассмотрим следующие возможные случаи:

1) Корни характеристического уравнения действительные, отрицательные и различные.

Точка покоя будет устойчива. Такая точка покоя называется Устойчивым узлом.

2) Корни характеристического уравнения действительны и

или .

В этом случае точка покоя также будет устойчива.

3) Хотя бы один из корней положителен.

В этом случае точка покоя Неустойчива, и такую точку называют Неустойчивым седлом.

4) Оба корня характеристического уравнения положительны .

В этом случае точка покоя Неустойчива, и такую точку называют Неустойчивым узлом.

Если полученного решения Системы исключить параметр T, то полученная функция дает траекторию движения в системе координат XOY.

Возможны следующие случаи:

b b

Устойчивый узел. Неустойчивый узел. Седло.

5) Корни характеристического уравнения комплексные .

Если Р = 0, т. е. корни чисто мнимые, то точка покоя (0, 0) устойчива по Ляпунову.

Такая точка покоя называется Центром.

Если P 0, то точка покоя неустойчива и называется Неустойчивым фокусом.

Уравнения математической физики.

Уравнения в частных производных.

Определение. Дифференциальным уравнением в частных производных Называется уравнение относительно неизвестной функции нескольких переменных, ее аргументов и ее частных производных различных порядков.

Порядком Дифференциального уравнения в частных производных называется порядок старшей производной, входящей в это уравнение. Решением Уравнения будет некоторая функция , которая обращает уравнение в тождество.

Системы линейных уравнений с примерами решений

Содержание:

Системы уравнений, как и отдельные уравнения, используют для решения сложных и необходимых задач. Системы уравнений бывают с двумя, тремя и более переменными. В этой главе вы ознакомитесь с простейшими системами двух уравнений с двумя переменными. Основные темы лекции:

  • уравнения с двумя переменными;
  • график линейного уравнения;
  • системы уравнений;
  • способ подстановки;
  • способ сложения;
  • решение задач составлением системы уравнений.

Уравнения с двумя переменными

До сих пор мы рассматривали уравнение с одной переменной. Однако существуют задачи, решение которых приводит к уравнениям с двумя переменными.

Пример:

На 22 руб. купили несколько книжек по 5 руб. и географических карт — по 3 руб. Сколько купили книжек и карт?

Решение:

Пусть купили х книжки у карт. За книжки заплатили 5х руб., а за карты — 3у руб. Всего заплатили 22 руб., то есть, 5х + Зу = 22.

Это уравнение с двумя переменными. Приведём и другие примеры таких уравнений с двумя переменными:

Уравнение вида ах + by = с, где а, b, с — данные числа, называется линейным уравнением с двумя переменными х и у. Если

Примеры линейных уравнений:

два первых из них — уравнение первой степени с двумя переменными.

Паре чисел х = -1 и у = 9 удовлетворяет уравнение 5х + Зу -= 22, так как А пара чисел х = 1 и у = 2 этому уравнению не удовлетворяет, поскольку

Каждая пара чисел, удовлетворяющая уравнение с двумя переменными, т. е. обращающая это уравнение в верное равенство, называется решением этого уравнения.

Обратите внимание: одно решение состоит из двух чисел, на первом месте записывают значение х, на втором — у. Корнями их не называют.

Чтобы найти решение уравнения с двумя переменными, следует подставить в уравнение произвольное значение первой неременной и, решив полученное уравнение, найти соответствующее значение второй переменной.

Для примера найдем несколько решений уравнения

Если х = 1, то отсюда у = -2. Пара чисел х = 1 и у = -2 — решение данного уравнения. Его записывают ещё и так: (1; -2). Придавая переменной х значения 2, 3, 4, . , так же можно найти сколько угодно решений уравнения: (2; 1), (3; 4), (4; 7), (5; 10), . Каждое уравнение первой степени с двумя переменными имеет бесконечно много решений.

Уравнение также имеет бесконечно много решений, но сформулированную выше задачу удовлетворяет только одно из них: (2; 4).

Два уравнения с двумя переменными называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считаются равносильными.

Для уравнения с двумя переменными остаются справедливыми свойства, сформулированные для уравнений с одной переменной.

Обе части уравнения с двумя переменными можно умножить или разделить на одно и то же число, отличное от нуля. Любой член такого уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный. В результате получается уравнение, равносильное данному.

Например, уравнение можно преобразовать так: . Каждое из этих уравнений равносильно друг другу.

Иногда возникает потребность решить уравнение с двумя переменными во множестве целых чисел, то есть определить решения, являющиеся парами целых чисел. Способы решения таких уравнений определил древнегреческий математик Диофант (III в.), поэтому их называют диофантовыми уравнениями. Например, задача о книжках и картах сводится к уравнению где х и у могут быть только целыми (иногда натуральными) числами.

Переменную у из этого уравнения выразим через х:

Будем подставлять в равенство вместо х первые натуральные числа до тех пор, пока не получим целое значение переменной у. Это можно делать устно. Если х = 2, то у = 4. Других натуральных решений уравнение не имеет. Поэтому задача имеет единственное решение: 2 книги и 4 карты.

Пример:

Решение:

а) При любых значениях х и у значения выражения не может быть отрицательным числом. Поэтому уравнение не имеет решений.

б) Значение выражения равно нулю только при условии, когда x -3 = 0 и y = 0. Значит, уравнение имеет только одно решение: х = 3, у = 0.

Пример:

Составьте уравнение с двумя переменными, решением которого будет пара чисел (1; -5).

Решение:

Пишем любой двучлен с переменными х и у, например Если х = 1, а у = -5, то значение даного двучлена равно 28. Следовательно, уравнение удовлетворяет условие задачи.

Есть много других линейных уравнений с двумя переменными, имеющих такое же решение (1; -5).

График линейного уравнения с двумя переменными

Рассмотрим уравнение Давая переменной х значения -2, -1,0,1,2, 3. найдём соответствующие значения переменной у. Будем иметь решение данного уравнения: (-2; -б), (-1; -4,5), (0; -3),

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Общая теория систем линейных уравнений

Условия совместности.

Займемся изучением систем из m уравнений с n неизвестными. Систему
\begina_<1>^<1>x^<1>+a_<2>^<1>x^<2>+. +a_^<1>x^=b^<1>,\\a_<1>^<2>x^<1>+a_<2>^<2>x^<2>+. +a_^<2>x^=b^<2>,\\\cdots\\a_<1>^x^<1>+a_<2>^x^<2>+. +a_^x^=b^\end мы можем кратко записать в виде \tag <1>A\boldsymbol=\boldsymbol.
Система задается своей расширенной матрицей A^ <*>, получаемой объединением матрицы системы A и столбца свободных членов \boldsymbol .

Простое и эффективное условие, необходимое и достаточное для совместности системы (1) , дает следующая теорема, называемая теоремой Кронекера-Капелли.

Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

Иначе утверждение теоремы можно сформулировать так: приписывание к матрице A размеров m \times n столбца \boldsymbol высоты m не меняет ее ранга тогда и только тогда, когда этот столбец — линейная комбинация столбцов A .

Если \mathbf\,A^ <*>= \mathbf\,A , то базисный минор A является базисным и для A^ <*>. Следовательно, \boldsymbol раскладывается по базисным столбцам A . Мы можем считать его линейной комбинацией всех столбцов A , добавив недостающие столбцы с нулевыми коэффициентами.

Обратно, если \boldsymbol раскладывается по столбцам A , то элементарными преобразованиями столбцов можно превратить A^ <*>в матрицу A_ <0>, получаемую из A приписыванием нулевого столбца. Из утверждения о том, что ранг матрицы не меняется при элементарных преобразованиях, следует \mathbf\,A_ <0>= \mathbf\,A^ <*>. С другой стороны, \mathbf\,A_ <0>= \mathbf\,A , так как добавление нулевого столбца не может создать новых невырожденных подматриц. Отсюда \mathbf\,A = \mathbf\,A^ <*>, как и требовалось.

Иначе это утверждение можно сформулировать так.

Система линейных уравнений несовместна тогда и только тогда, когда противоречивое равенство 0=1 является линейной комбинацией ее уравнений.

Равенство рангов матрицы системы и расширенной матрицы можно выразить, понимая ранг матрицы как строчный ранг. Это приведет нас к важной теореме, известной как теорема Фредгольма.

Транспонируем матрицу A системы (1) и рассмотрим систему из n линейных уравнений \tag <2>\begin a_<1>^<1>y_<1>+a_<1>^<2>y_<2>+. +a_<1>^y_=0,\\ a_<2>^<1>y_<1>+a_<2>^<2>y_<2>+. +a_<2>^y_=0,\\\cdots\\a_^<1>y_<1>+a_^<2>y_<2>+. +a_^y_=0\end с m неизвестными, матрицей A^и свободными членами, равными нулю. Она называется сопряженной однородной системой для системы (1) . Если \boldsymbol — столбец высоты m из неизвестных, то систему (2) можно записать как A^\boldsymbol=\boldsymbol , или лучше в виде \tag <3>\boldsymbol^A=\boldsymbol, где \boldsymbol — нулевая строка длины n .

Для того чтобы система (1) была совместна, необходимо и достаточно, чтобы каждое решение сопряженной однородной системы (3) удовлетворяло уравнению \tag <4>\boldsymbol^\boldsymbol=y_<1>b^<1>+. +y_b^=0.

1^ <\circ>. Пусть система (1) совместна, то есть существует столбец \boldsymbol высоты n , для которого A\boldsymbol=\boldsymbol . Тогда для любого столбца \boldsymbol высоты m выполнено \boldsymbol^A\boldsymbol=\boldsymbol^\boldsymbol . Если \boldsymbol — решение системы (3) , то \boldsymbol^\boldsymbol=(\boldsymbol^A)\boldsymbol=\boldsymbol\boldsymbol=0 .

2^ <\circ>. Предположим теперь, что система (1) несовместна. Тогда согласно утверждению 1 строка \begin 0&. & 0& 1 \end входит в упрощенный вид расширенной матрицы A^<*>=\begin A& |& \boldsymbol \end и, следовательно, является линейной комбинацией ее строк. Обозначим коэффициенты этой линейной комбинации y_<1>. y_ и составим из них столбец \boldsymbol . Для этого столбца \boldsymbol^\begin A& |& \boldsymbol \end=\begin 0&. & 1 \end (согласно данного утверждения). Это же равенство можно расписать как два: \boldsymbol^A=\boldsymbol и \boldsymbol^\boldsymbol=1 . Итак, нам удалось найти решение системы (3) , не удовлетворяющее условию (4) . Это заканчивает доказательство.

В качестве примера применим теорему Фредгольма к выводу условия параллельности двух различных прямых на плоскости. Их уравнения составляют систему A_<1>x+B_<1>y+C_<1>=0,\ A_<2>x+B_<2>y+C_<2>=0.
Она не имеет решений, если существуют такие числа y_<1>, y_ <2>, что y_<1>A_<1>+y_<2>A_<2>=0 , y_<1>B_<1>+y_<2>B_<2>=0 , но y_<1>C_<1>+y_<2>C_ <2>\neq 0 . Ясно, что y_ <1>и y_ <2>не равны нулю. Поэтому можно положить \lambda=-y_<2>/y_ <1>и записать полученное условие в виде: существует число \lambda такое, что A_<1>=\lambda A_ <2>, B_<1>=\lambda B_ <2>и C_ <1>\neq \lambda C_ <2>.

Нахождение решений.

В этом пункте мы будем предполагать, что дана совместная система из m линейных уравнений с n неизвестными. Ранг матрицы системы обозначим r . Поскольку ранг расширенной матрицы тоже равен r , мы можем считать базисные столбцы матрицы системы базисными столбцами расширенной матрицы. Элементарными преобразованиями строк приведем расширенную матрицу к упрощенному виду (возможность этого мы уже доказывали). Наша система линейных уравнений перейдет в эквивалентную ей систему из r линейно независимых уравнений.

Для удобства записи будем предполагать, что первые r столбцов — базисные. Тогда преобразованную систему можно записать в виде \tag <5>\begin x^<1>=\beta^<1>-(\alpha_^<1>x^+. +\alpha_^<1>x^),\\\cdots\\x^=\beta^-(\alpha_^x^+. +\alpha_^x^).\end
Здесь \alpha_^ и \beta^ — элементы преобразованной расширенной матрицы. В левых частях равенств мы оставили неизвестные, соответствующие выбранным нами базисным столбцам, так называемые базисные неизвестные. Остальные неизвестные, называемые параметрическими, перенесены в правые части равенств.

Как бы мы ни задали значения параметрических неизвестных, по формулам (5) мы найдем значения базисных так, что они вместе со значениями параметрических неизвестных образуют решение системы (1) . Легко видеть, что так мы получим все множество решений.

На формулах (5) можно было бы и остановиться, но ниже мы дадим более простое и наглядное, а также принципиально важное описание совокупности решений системы линейных уравнений.

Приведенная система.

Сопоставим системе линейных уравнений (1) однородную систему с той же матрицей коэффициентов: \tag<6>A\boldsymbol=\boldsymbol. По отношению к системе (1) она называется приведенной.

Пусть \boldsymbol_ <0>— решение системы (1) . Столбец \boldsymbol также будет ее решением тогда и только тогда, когда найдется такое решение у приведенной системы (6) , что \boldsymbol=\boldsymbol_<0>+\boldsymbol .

Пусть \boldsymbol — решение системы (1) . Рассмотрим разность \boldsymbol=\boldsymbol-\boldsymbol_ <0>. Для нее A\boldsymbol=A\boldsymbol-A\boldsymbol_<0>=\boldsymbol-\boldsymbol=\boldsymbol .

Обратно, если \boldsymbol — решение системы (6) , и \boldsymbol=\boldsymbol_<0>+\boldsymbol , то A\boldsymbol=A\boldsymbol_<0>+A\boldsymbol=\boldsymbol+\boldsymbol=\boldsymbol .

Это предложение сводит задачу описания множества решений совместной системы линейных уравнений к описанию множества решений ее приведенной системы.

Однородная система совместна. Действительно, нулевой столбец является ее решением. Это решение называется тривиальным.

Пусть столбцы матрицы A линейно независимы, то есть \mathbf\,A=n . Тогда система (6) имеет единственное решение (ранее мы это уже доказывали) и, следовательно, нетривиальных решений не имеет.

Если \boldsymbol_ <1>и \boldsymbol_ <2>— решения однородной системы, то любая их линейная комбинация — также решение этой системы.

Действительно, из A\boldsymbol_<1>=\boldsymbol и A\boldsymbol_<2>=\boldsymbol для любых \alpha и \beta следует A(\alpha \boldsymbol_<1>+\beta \boldsymbol_<2>)=\alpha A \boldsymbol_<1>+\beta A\boldsymbol_<2>=\boldsymbol .

Если однородная система имеет нетривиальные решения, то можно указать несколько линейно независимых решений таких, что любое решение является их линейной комбинацией. Сделаем это.

Матрица F , состоящая из столбцов высоты n , называется фундаментальной матрицей для однородной системы с матрицей А, если:

  1. AF=O ;
  2. столбцы F линейно независимы;
  3. ранг F максимален среди рангов матриц, удовлетворяющих условию 1).

Столбцы фундаментальной матрицы называются фундаментальной системой решений.

Если фундаментальная матрица существует, то каждый ее столбец в силу первого условия определения — решение системы. Если система не имеет нетривиальных решений, то фундаментальной матрицы нет. Это будет в том случае, когда столбцы А линейно независимы: \mathbf\,A=n .

Ниже мы докажем, что в остальных случаях фундаментальная матрица существует, но сначала выясним, что означает третье условие в определении.

Пусть A — матрица размеров m \times n и ранга r . Если AF=O , то \mathbf\,F \leq n-r .

Приведем матрицу A к упрощенному виду элементарными преобразованиями строк, а затем элементарными преобразованиями столбцов обратим в нулевые все небазисные столбцы. Мы получим матрицу A’=PAQ , где P и Q — произведения соответствующих элементарных матриц. Первые r строк A’ — строки единичной матрицы порядка n , а остальные — нулевые. Обозначим F’=Q^<-1>F . Тогда \mathbf\,F’ = \mathbf\,F . Используя ранее доказанное нами утверждение, легко заметить, что первые r строк матрицы A’F’ совпадают с первыми r строками F’ . Но A’F’=PAF=O и, следовательно, F’ содержит r нулевых строк. Так как всего в ней n строк, \mathbf\,F’ \leq n-r . Это равносильно доказываемому утверждению.

Покажем теперь, как может быть построена фундаментальная матрица. Согласно ранее доказанному утверждению, решение однородной системы состоит из коэффициентов равной нулю линейной комбинации столбцов матрицы системы. Мы можем получить такие линейные комбинации, основываясь на теореме о базисном миноре. Снова для удобства записи будем считать, что в матрице A первые r столбцов — базисные. Каждый из небазисных столбцов \boldsymbol_ (j=r+1. n) раскладывается по базисным: \tag <7>\boldsymbol_=\alpha_^<1>\boldsymbol_<1>+. +\alpha_^\boldsymbol_. Отсюда следует, что столбец \begin -\alpha_^<1>. -\alpha_^& 0. 0& 1& 0. 0 \end^решением. (Единица в нем стоит на j -м месте.)

Таких решений можно составить столько, сколько есть небазисных столбцов, то есть (n-r) . Убедимся в том, что эти решения линейно независимы. Для этого объединим все столбцы в одну матрицу \tag <8>\begin -\alpha_^<1>& -\alpha_^<1>&. -\alpha_^<1>,\\\cdots\\-\alpha_^& -\alpha_^&. -\alpha_^,\\1& 0&. & 0\\0& 1&. & 0\\\cdots\\0& 0&. & 1\end.
Подматрица в последних n-r строках — единичная. Поэтому ранг матрицы (8) равен числу столбцов, и столбцы линейно независимы.

Таким образом, мы получили

Если ранг матрицы однородной системы линейных уравнений r меньше числа неизвестных n , то система имеет фундаментальную матрицу из n-r столбцов.

Итак, система столбцов (8) — фундаментальная система решений. Она называется нормальной фундаментальной системой решений. Каждому выбору базисных столбцов соответствует своя нормальная фундаментальная система решений. Вообще же, каждая система из n-r линейно независимых решений является фундаментальной.

Для нахождения матрицы (8) можно привести матрицу A системы к упрощенному виду, что даст коэффициенты разложения небазисных столбцов по базисным.

Пусть F — фундаментальная матрица системы A\boldsymbol=\boldsymbol . Рассмотрим произвольный столбец с высоты n-r . Произведение F\boldsymbol — столбец высоты n , и из равенства AF\boldsymbol =\boldsymbol следует, что при любом с столбец F\boldsymbol — решение системы. Оказывается, имеет место

Столбец \boldsymbol — решение системы A\boldsymbol=\boldsymbol тогда и только тогда, когда существует такой столбец \boldsymbol , что \tag <9>\boldsymbol=F\boldsymbol.

Остается доказать необходимость условия. Пусть \boldsymbol — решение. Присоединив его к F , получим матрицу F^<*>=\begin F\ |\ \boldsymbol \end . Эта матрица удовлетворяет условию AF^<*>=O , так как каждый ее столбец — решение. Значит, \mathbf\,F^<*>=n-r . По теореме Кронекера-Капелли мы заключаем отсюда, что существует столбец \boldsymbol , удовлетворяющий системе F\boldsymbol=\boldsymbol .

Общее решение системы линейных уравнений.

Теперь мы можем собрать воедино наши результаты — утверждения 2 и 6.

Выражение, стоящее в правой части формулы (10) , называется общим решением системы линейных уравнений. Если \boldsymbol_<1>. \boldsymbol_ — фундаментальная система решений, а c_<1>. c_ — произвольные постоянные, то формула (10) может быть написана так: \tag <11>\boldsymbol=\boldsymbol_<0>+c_<1>\boldsymbol_<1>+. +c_\boldsymbol_.

Теорема 3 верна, в частности, и для однородных систем. Если \boldsymbol_ <0>— тривиальное решение, то (10) совпадает с (9) .

Одна из ранее доказанных нами теорем гласит, что для существования единственного решения системы из n линейных уравнений с n неизвестными достаточно, чтобы матрица системы имела детерминант, отличный от нуля. Сейчас легко получить и необходимость этого условия.

Пусть A — матрица системы из n линейных уравнений с n неизвестными. Если \det A=0 , то система либо не имеет решения, либо имеет бесконечно много решений.

Равенство \det A=0 означает, что \mathbf\,A и, следовательно, приведенная система имеет бесконечно много решений. Если данная система совместна, то из теоремы 3 следует, что и она имеет бесконечно много решений.

Пример.

Рассмотрим уравнение плоскости как систему \tag<12>Ax+By+Cz+D=0 из одного уравнения. Пусть A \neq 0 и потому является базисным минором матрицы системы. Ранг расширенной матрицы 1, значит, система совместна. Одно ее решение можно найти, положив параметрические неизвестные равными нулю: y=z=0 . Мы получим x=-D/A . Так как n=3 , r=1 , фундаментальная матрица имеет два столбца. Мы найдем их, придав параметрическим неизвестным два набора значений: y=1 , z=0 и y=0 , z=1 . Соответствующие значения базисной неизвестной x , найденные из приведенной системы, будут -B/A и -C/A . Итак, общее решение системы (12) \tag <13>\begin x\\ y\\ z \end=\begin -D/A\\ 0\\ 0 \end+c_ <1>\begin -B/A\\ 1\\ 0 \end+c_ <2>\begin -C/A\\ 0\\ 1 \end.

Выясним геометрический смысл полученного решения. Очевидно, прежде всего, что решение \begin -D/A& 0& 0 \end^состоит из координат некоторой (начальной) точки плоскости, или, что то же, из компонент ее радиус-вектора. В формуле (10) решение x_0 можно выбирать произвольно. Это соответствует произволу выбора начальной точки плоскости. Мы уже знаем, что компоненты лежащих в плоскости векторов удовлетворяют уравнению A\alpha_<1>+B\alpha_<2>+C\alpha_<3>=0 , то есть приведенной системе. Два линейно независимых решения этой системы (фундаментальная система решений) могут быть приняты за направляющие векторы плоскости. Таким образом, формула (13) — не что иное, как параметрические уравнения плоскости.


источники:

http://www.evkova.org/sistemyi-linejnyih-uravnenij

http://univerlib.com/analytic_geometry/matrices_and_systems_of_linear_equations/common_theory_of_linear_equations_systems/