Когда уравнение не имеет корней на графике

Графический метод. Описание, примеры решения уравнений

Эта статья посвящена одному из направлений функционально-графического метода решения уравнений, а именно, графическому методу. Сначала дано описание графического метода: раскрыта его суть, сказано, на чем базируется метод, приведено его обоснование, обговорены особенности метода, связанные с точностью. Дальше идет практическая часть: записан алгоритм решения уравнений графическим методом и показаны решения характерных примеров.

В чем состоит метод и на чем он базируется

Графический метод решения уравнений состоит в использовании графиков функций, отвечающих частям уравнения, для нахождения с их помощью решения уравнения. Базируется он на следующем утверждении:

Решение уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) .

Обоснованием этого утверждения займемся в следующем пункте. А сейчас выудим из него полезные сведения.

Основное из них таково: по количеству точек пересечения графиков функций y=f(x) и y=g(x) можно судить о количестве корней уравнения f(x)=g(x) , а по абсциссам точек пересечения можно судить о корнях этого уравнения. Проиллюстрируем сказанное.

Взглянем на чертеж, на котором изображены графики функций и .

Очевидно, в видимой области графики изображенных функций не имеют точек пересечения. За пределами видимой области графики тоже не имеют точек пересечения. Это мы можем утверждать в силу известного нам поведения графиков степенных функций и линейных функций. Отсутствие точек пересечения позволяет нам сделать вывод, что уравнение не имеет решений.

Другой пример. На следующем рисунке изображены графики функций и .

Сколько точек пересечения мы видим? Две. Известное поведение графиков показательных функций и линейных функций позволяет утверждать, что за пределами видимой области точек пересечения нет. Значит, графики функций и пересекаются в двух точках, следовательно, уравнение имеет два корня. А каковы значения этих корней? Для ответа на этот вопрос определяем абсциссы точек пересечения графиков. По рисунку находим, что абсциссы точек пересечения есть −2 и 1 . Через проверку подстановкой убеждаемся, что это действительно корни уравнения :

Здесь стоит заметить, что к проверке подстановкой мы обратились не случайно. Дело в том, что найденные по графикам значения корней можно считать лишь приближенными до проведения проверки. Подробнее об этом мы поговорим в одном из следующих пунктов этой статьи, раскрывающем особенности графического метода.

Обоснование метода

Докажем, что множество решений уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) . Для этого достаточно показать, во-первых, что если x0 – корень уравнения f(x)=g(x) , то x0 – это абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , и, во-вторых, если x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , то x0 – корень уравнения f(x)=g(x) . Приступаем к доказательству.

Пусть x0 – корень уравнения f(x)=g(x) . Тогда f(x0)=g(x0) – верное числовое равенство. Это равенство можно трактовать так: значения функции y=f(x) и y=g(x) в точке x0 совпадают. А из этого следует, что x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) .

Первая часть доказана. Переходим к доказательству второй части.

Пусть x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) . Это означает, что значения функций y=f(x) и y=g(x) в точке x0 равны, значит, f(x0)=g(x0) . А из этого равенства следует, что x0 – корень уравнения f(x)=g(x) .

Так доказана вторая часть.

Особенности метода

Графический метод предполагает использование графиков функций. В общем случае построение графиков функций – дело непростое. Поэтому, графический метод решения уравнения обычно применяется лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, и при этом не видно другого аналитического метода решения. Это одна из особенностей графического метода решения уравнений.

Другая особенность касается получаемых по графикам результатов. Полученные по графикам результаты можно считать лишь приближенными. Дело здесь в том, что сами по себе графики функций — вещь не совсем точная (но при этом очень наглядная и во многих отношениях удобная), особенно если говорить о графиках, построенных от руки. Это следует из принципов, которыми мы руководствуемся при построении графиков функций. Что мы делаем для построения графика функции в общем случае? Проводим исследование функции, чтобы получить ряд «опорных» точек, таких как граничные точки области определения, максимумы-минимумы, точки перегиба, и понять поведение функции на всех интервалах ее области определения. После этого определяем несколько контрольных точек. Дальше переносим все определенные в ходе исследования точки на координатную плоскость и, сейчас внимание, соединяем их плавной линией в соответствии с выясненным в ходе исследования поведением функции. Эта «плавная линия» и есть график функции. О какой точности можно здесь говорить? Понятно, что она определяется точностью нашего построения.

С приближенными, найденными по графикам, значениями корней уравнения можно так или иначе работать. В некоторых случаях определенные по графикам значения корней оказываются точными значениями, в чем позволяет убедиться проверка подстановкой. В других случаях есть возможность уточнить значения корней до требуемой степени точности, для этого существуют специальные методы уточнения значений корней. А вот если по графикам нет возможности определить количество корней, не говоря уже об их значении, то, почти наверняка, стоит отказываться от графического метода решения уравнения. Добавим наглядности сказанному.

Давайте посмотрим на изображенные в одной прямоугольной системе координат графики функций и y=−x 2 +6·x−5 .

По этому чертежу сложно судить даже о количестве корней уравнения , не говоря уже про их значения с приемлемой степенью точности. Здесь можно лишь грубо сказать, что если корни есть, то их значения находятся на промежутке от нуля до трех. Такую прикидку мы даем по той причине, что графики функций в обозначенном промежутке очень близки, почти совпадают. Если есть возможность построить графики более точно в обозначенном промежутке, то это немного проясняет картину:

Сейчас мы видим три точки пересечения, даже можем приближенно указать их абсциссы: 1 , 2 и 2,7 . Но опять же, это не более чем приближенные результаты, нуждающиеся в проверке и строгом обосновании.

Учитывая оговоренные особенности графического метода решения уравнения, для себя можно принять следующее: к графическому методу стоит обращаться лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, когда по построенным графикам можно с уверенностью указать точное количество точек их пересечения, и когда не просматривается альтернативный метод решения.

Алгоритм решения уравнений графическим методом

Анализ приведенной выше информации позволяет записать алгоритм решения уравнений графическим методом. Чтобы решить уравнение графически, надо:

  • Построить в одной прямоугольной системе координат графики функций, отвечающие левой и правой частям уравнения.
  • По чертежу определить все точки пересечения графиков:
    • если точек пересечения нет, то решаемое уравнение не имеет корней,
    • если точки пересечения имеются, то переходим к следующему шагу алгоритма.
  • По чертежу определить абсциссы всех точек пересечения графиков – это приближенные значения всех корней исходного уравнения.
  • Если есть основания полагать, что некоторые или все определенные на предыдущем шаге значения являются точными значениями корней решаемого уравнения, то осуществить их проверку, например, подстановкой.

Дадим краткий комментарий к последнему шага алгоритма. Иногда определенные по чертежу приближенные значения корней оказываются точными. Обычно это касается целых значений. Но, опять же, прежде чем утверждать, что найденные значения является точными корнями уравнения, сначала нужно осуществить проверку этих значений, например, проверку подстановкой.

Решение примеров

Графический метод решения уравнений начинает входить в арсенал изучающих математику в 7 классе сразу же после знакомства с координатной плоскостью и самой первой функцией – линейной функцией y=k·x+b . Именно тогда мы сталкиваемся с заданиями, наподобие следующего: с помощью графика линейной функции y=2·x−6 определить, при каком значении x будет y=0 [1, с. 50-51]. Для ответа на поставленный вопрос мы строим график указанной линейной функции y=2·x−6 .

По чертежу находим точку пересечения графика с осью Ox (ось Ox отвечает графику функции y=0 ), и определяем абсциссу точки пересечения: x=3 . По сути, мы решаем уравнение 2·x−6=0 графическим методом.

Чуть позже в 7 классе изучается функция y=x 2 . После этого опять заходит разговор о графическом методе решения уравнений, но уже более детальный, где метод уже называется своим именем и дается его алгоритм [1, с. 149-151; 2, с. 109]. Там с его помощью решаются уравнения, одной части которых отвечает функция y=x 2 , а другой – линейная функция y=k·x+b . Например, уравнение x 2 =x+1 . Для его решения строятся в одной системе координат соответствующие графики функций y=x 2 и y=x+1 :

Графики, очевидно, пересекаются в двух точках. Можно определить приближенные значения их абсцисс: .

В 8 классе изучаются новые виды функций: y=k/x , квадратичная функция y=a·x 2 +b·x+c , . И, естественно, рассматривается графический метод решения соответствующих уравнений. Особенно тщательно разбирается графическое решение квадратных уравнений. В учебнике Мордковича А. Г. приведены аж пять способов графического решения уравнения x 2 −2·x−3=0 [2, с. 127-131].

И так далее: изучаются функции , степенные функции, тригонометрические, показательные, логарифмические, …, — рассматривается решение соответствующих уравнений графическим методом. Так к концу школьного курса математики мы начинаем воспринимать графический метод решения уравнений как общий метод, позволяющий решать уравнения не только определенных видов, но и уравнения, в которых уживаются самые разнообразные функции: показательные с корнями, тригонометрические с логарифмическими и т.д. Покажем решение такого уравнения.

Решите уравнение

В заключение вспомним, что в этой статье при разговоре об особенностях графического метода решения уравнений мы обращались к иррациональному уравнению . В качестве «благодарности» этому уравнению за помощь в обретении знаний приведем ссылку на его решение графическим методом.

Какое уравнение не имеет корней? Примеры уравнений

Решение уравнений в математике занимает особое место. Этому процессу предшествует множество часов изучения теории, в ходе которых ученик узнает способы решения уравнений, определения их вида и доводит навык до полного автоматизма. Однако далеко не всегда поиск корней имеет смысл, так как их может попросту не быть. Существуют особые приемы нахождения корней. В данной статье мы разберем основные функции, их области определения, а также случаи, когда их корни отсутствуют.

Какое уравнение не имеет корней?

Уравнение не имеет корней в том случае, если не существует таких действительных аргументов х, при которых уравнение тождественно верно. Для неспециалиста данная формулировка, как и большинство математических теорем и формул, выглядит очень размытой и абстрактной, однако это в теории. На практике все становится предельно просто. Например: уравнение 0 * х = -53 не имеет решения, так как не найдется такого числа х, произведение которого с нулем дало бы что-то, кроме нуля.

Сейчас мы рассмотрим самые базовые типы уравнений.

1. Линейное уравнение

Уравнение называется линейным, если его правая и левая части представлены в виде линейных функций: ax + b = cx + d или в обобщенном виде kx + b = 0. Где а, b, с, d — известные числа, а х — неизвестная величина. Какое уравнение не имеет корней? Примеры линейных уравнений представлены на иллюстрации ниже.

В основном линейные уравнения решаются простым переносом числовой части в одну часть, а содержимого с х — в другую. Получается уравнение вида mx = n, где m и n — числа, а х — неизвестное. Чтобы найти х, достаточно разделить обе части на m. Тогда х = n/m. В основном линейные уравнения имеют только один корень, однако бывают случаи, когда корней либо бесконечно много, либо нет вовсе. При m = 0 и n = 0 уравнение принимает вид 0 * х = 0. Решением такого уравнения будет абсолютно любое число.

Однако какое уравнение не имеет корней?

При m = 0 и n = 0 уравнение не имеет корней из множества действительных чисел. 0 * х = -1; 0 * х = 200 — эти уравнения не имеют корней.

2. Квадратное уравнение

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0 при а = 0. Самым распространенным способом решения квадратного уравнения является решение через дискриминант. Формула нахождения дискриминанта квадратного уравнения: D = b 2 — 4 * a * c. Далее находится два корня х1,2= (-b ± √D) / 2 * a.

При D > 0 уравнение имеет два корня, при D = 0 — корень один. Но какое квадратное уравнение не имеет корней? Пронаблюдать количество корней квадратного уравнения проще всего по графику функции, представляющем собой параболу. При а > 0 ветви направлены вверх, при а 2 – 8x + 72 = 0 не имеет корней, так как имеет отрицательный дискриминант D = (–8) 2 – 4 * 1 * 72 = -224. Это значит, что парабола не касается оси абсцисс и функция никогда не принимает значение 0, следовательно, уравнение не имеет действительных корней.

3. Тригонометрические уравнения

Тригонометрические функции рассматриваются на тригонометрической окружности, однако могут быть представлены и в декартовой системе координат. В данной статье мы рассмотрим две основные тригонометрические функции и их уравнения: sinx и cosx. Так как данные функции образуют тригонометрическую окружность с радиусом 1, |sinx| и |cosx| не могут быть больше 1. Итак, какое уравнение sinx не имеет корней? Рассмотрим график функции sinx, представленный на картинке ниже.

Мы видим, что функция является симметричной и имеет период повторения 2pi. Исходя их этого, можно говорить, что максимальным значением этой функции может быть 1, а минимальным -1. Например, выражение cosx = 5 не будет иметь корней, так как по модулю оно больше единицы.

Это самый простой пример тригонометрических уравнений. На самом деле их решение может занимать множество страниц, в конце которых вы осознаете, что использовали неправильную формулу и все нужно начинать сначала. Порой даже при правильном нахождении корней вы можете забыть учесть ограничения по ОДЗ, из-за чего в ответе появляется лишний корень или интервал, и весь ответ обращается в ошибочный. Поэтому строго следите за всеми ограничениями, ведь не все корни вписываются в рамки задачи.

4. Системы уравнений

Система уравнений представляет собой совокупность уравнений, объединенных фигурной или квадратной скобками. Фигурные скобки обозначают совместное выполнение всех уравнений. То есть если хотя бы одно из уравнений не имеет корней или противоречит другому, вся система не имеет решения. Квадратные скобки обозначают слово «или». Это значит, что если хотя бы одно из уравнений системы имеет решение, то вся система имеет решение.

Ответом системы с квадратными скобками является совокупность всех корней отдельных уравнений. А системы с фигурным скобками имеют только общие корни. Системы уравнений могут включать абсолютно разнообразные функции, поэтому такая сложность не позволяет сказать сразу, какое уравнение не имеет корней.

Обобщение и советы по нахождению корней уравнения

В задачниках и учебниках встречаются разные типы уравнений: такие, которые имею корни, и не имеющие их. В первую очередь, если у вас не получается найти корни, не думайте, что их нет совсем. Возможно, вы совершили где-нибудь ошибку, тогда достаточно лишь внимательно перепроверить ваше решение.

Мы рассмотрели самые базовые уравнения и их виды. Теперь вы можете сказать, какое уравнение не имеет корней. В большинстве случаев сделать это совсем не трудно. Для достижения успеха в решении уравнений требуется лишь внимание и сосредоточенность. Практикуйтесь больше, это поможет вам ориентироваться в материале гораздо лучше и быстрее.

Итак, уравнение не имеет корней, если:

  • в линейном уравнении mx = n значение m = 0 и n = 0;
  • в квадратном уравнении, если дискриминант меньше нуля;
  • в тригонометрическом уравнении вида cosx = m / sinx = n, если |m| > 0, |n| > 0;
  • в системе уравнений с фигурными скобками, если хотя бы одно уравнение не имеет корней, и с квадратными скобками, если все уравнения не имеют корней.

Применение производной для решения нелинейных уравнений и неравенств

п.1. Количество корней кубического уравнения

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. \begin f(x)=ax^3+bx^2+cx+d\\ f'(x)=3ax^2+bx+c \end Если в уравнении \(f'(x)=0\) дискриминант \(D=4b^2-12ac=4(b^2-3ac)\gt 0\), кубическая парабола имеет две точки экстремума: \(x_<1,2>=\frac<-2b\pm\sqrt><6a>\). Если при этом значения функции в точках экстремума \(f(x_1)\cdot f(x_2)\lt 0\), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но \(f(x_1)\cdot f(x_2)=0\), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

1) \(x^3+3x^2-4=0\)
\(b^2-3ac=9\gt 0 (c=0) \)
\(f(x)=x^3+3x^2-4 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-4,\ f(x_2)=0 \)
\(f(x_1)\cdot f(x_2)=0\Rightarrow\) два корня
2) \(x^3+3x^2-1=0\)
\(b^2-3ac=9\gt 0 \)
\(f(x)=x^3+3x^2-1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-1,\ f(x_2)=3 \)
\(f(x_1)\cdot f(x_2)\lt 0\Rightarrow\) три корня
3) \(x^3+3x^2+1=0\)
\(b^2-3ac=9\gt 0\)
\(f(x)=x^3+3x^2+1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=1,\ f(x_2)=5 \)
\(f(x_1)\cdot f(x_2)\gt 0\Rightarrow\) один корень
4) \(x^3+x^2+x+3=0\)
\(b^2-3ac=1-3\lt 0 \)
Один корень

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>\)
б) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>=k\)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью \(y=1\). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=\frac1x+\frac<1>+\frac<1> $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: \(x\ne\left\<0;1;3\right\>\)
Все три точки – точки разрыва 2-го рода. \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-\infty-1-\frac13=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+\infty-1-\frac13=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1-\infty-\frac12=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1+\infty-\frac12=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12-\infty=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12+\infty=+\infty \end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные \(x=0, x=1, x=3\) – точки разрыва 2-го рода
2. Горизонтальные: \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-0-0-0=-0\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+0+0+0=+0\\ \end Горизонтальная асимптота \(y=0\)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: \(k=0\), нет.
4) Первая производная $$ f'(x)=-\frac<1>-\frac<1><(x-1)^2>-\frac<1><(x-3)^2>\lt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. \(x=0\) – асимптота
Точки пересечения с OX – две, \(0\lt x_1\lt 1,1\lt x_2\lt 3\)

7) График

Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь \(y=k\) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При \(k\lt 0\) — три корня
При \(k=0\) — два корня
При \(k\gt 0\) — три корня

Ответ: а) 3 корня; б) при \(k=0\) два корня, при \(k\ne 0\) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ \sqrt+\sqrt<10-2x>=a $$ имеет по крайней мере одно решение.

Исследуем функцию \(f(x)=\sqrt+\sqrt<10-2x>\)
ОДЗ: \( \begin x-1\geq 0\\ 10-2x\geq 0 \end \Rightarrow \begin x\geq 1\\ x\leq 5 \end \Rightarrow 1\leq x\leq 5 \)
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: \(f(1)=0+\sqrt<8>=2\sqrt<2>,\ f(5)=\sqrt<4>+0=2\)
Первая производная: \begin f'(x)=\frac<1><2\sqrt>+\frac<-2><2\sqrt<10-2x>>=\frac<1><2\sqrt>-\frac<1><\sqrt<10-2x>>\\ f'(x)=0\ \text<при>\ 2\sqrt=\sqrt<10-2x>\Rightarrow 4(x-1)=10-2x\Rightarrow 6x=14\Rightarrow x=\frac73\\ f\left(\frac73\right)=\sqrt<\frac73-1>+\sqrt<10-2\cdot \frac73>=\sqrt<\frac43>+\sqrt<\frac<16><3>>=\frac<6><\sqrt<3>>=2\sqrt <3>\end Промежутки монотонности:

\(x\)1(1; 7/3)7/3(7/3; 5)5
\(f'(x)\)+0
\(f(x)\)\(2\sqrt<2>\)\(\nearrow \)max
\(2\sqrt<3>\)
\(\searrow \)2

Можем строить график:

\(y=a\) — горизонтальная прямая.
Количество точек пересечения \(f(x)\) и \(y\) равно количеству решений.
Получаем:

$$ a\lt 2 $$нет решений
$$ 2\leq a\lt 2\sqrt <2>$$1 решение
$$ 2\sqrt<2>\leq a\lt 2\sqrt <3>$$2 решения
$$ a=2\sqrt <3>$$1 решение
$$ a\gt 2\sqrt <3>$$нет решений

По крайней мере одно решение будет в интервале \(2\leq a\leq 2\sqrt<3>\).

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство \(\frac<2+\log_3 x>\gt \frac<6><2x-1>\)

Разобьем неравенство на совокупность двух систем.
Если \(x\gt 1\), то \(x-1\gt 0\), на него можно умножить слева и справа и не менять знак.
Если \(x\lt 1\), то \(x-1\lt 0\), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: \(x\gt 0\)

Получаем совокупность: \begin \left[ \begin \begin x\gt 1\\ 2+\log_3 x\gt\frac<6(x-1)> <2x-1>\end \\ \begin 0\lt x\lt 1\\ 2+\log_3 x\lt\frac<6(x-1)> <2x-1>\end \end \right. \\ 2+\log_3 x\gt \frac<6(x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<6(x-1)-2(2x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<2x-4><2x-1>\\ \left[ \begin \begin x\gt 1\\ \log_3 x\gt\frac<2x-4> <2x-1>\end \\ \begin 0\lt x\lt 1\\ \log_3 x\lt\frac<2x-4> <2x-1>\end \end \right. \end Исследуем функцию \(f(x)=\frac<2x-4><2x-1>=\frac<2x-1-3><2x-1>=1-\frac<3><2x-1>\)
Точка разрыва: \(x=\frac12\) – вертикальная асимптота
Односторонние пределы: \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-0>=+\infty\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+0>=-\infty \end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: \(y=1\) \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-\infty>=1+0\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+\infty>=1-0 \end На минус бесконечности кривая стремится к \(y=1\) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=\left(1-\frac<3><2x-1>\right)’=\frac<3><(2x-1)^2>\gt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-\frac<6> <(2x-1)^3>$$ Одна критическая точка 2-го порядка \(x=\frac12\)


источники:

http://fb.ru/article/413078/kakoe-uravnenie-ne-imeet-korney-primeryi-uravneniy

http://reshator.com/sprav/algebra/10-11-klass/primenenie-proizvodnoj-dlya-resheniya-nelinejnyh-uravnenij-i-neravenstv/