Количественный полярографический анализ основан на уравнении

Количественный полярографический анализ основан на уравнении

2.4. Вольтамперометрический метод анализа

2.4.1. Основные законы и формулы

Методы анализа, основанные на расшифровке поляризационных кривых (вольтамперограмм), получаемых в электролитической ячейке с поляризующимся индикаторным электродом и неполяризующимся электродом сравнения, называют вольтамперометрическим. Вольтамперограмма позволяет одновременно получить качественную и количественную информацию о веществах, восстанавливающихся или окисляющихся на микроэлектроде (деполяризаторах), а также о характере электродного процесса.

В качестве поляризующегося микроэлектрода часто применяют ртутный капельный электрод, а сам метод называют в этом случае полярографией, следуя термину, который предложил Я. Гейровский, разработавший этот метод в 1922 г .

При небольшом потенциале катода сила тока сначала медленно увеличивается с возрастанием потенциала – это так называемый остаточный ток, его значение имеет порядок 10 -7 А. По достижении потенциала восстановления на катоде начинается разряд ионов, определяемый диффузией, и сила тока резко возрастает, а затем становится постоянной – это предельный диффузионный ток.

Принципиальная схема полярографической установки: анализируемый раствор 1 находится в электролизере 2, на дне которого имеется слой ртути 3, являющийся анодом. Катодом служит ртутный капельный электрод 4, соединенный с резервауром ртути 5. Через электролизер протекает ток, напряжение которого, подаваемое на электроды, можно плавно менять с помощью реохорда или делителя напряжения 7 и измерять при этом гальванометром 6 силу тока, проходящего через раствор.

Зависимость тока I от приложенного напряжения Е при обратимом электродном процессе передается уравнением полярографической волны:

Е = Е 1/2 + ( R T / n F ) ln ( I d – I ) / I , (1)

Где Е 1/2 – потенциал полуволны; Id – диффузионный ток.

При I = Id / 2 уравнение (1) переходит в

Это соотношение показывает независимость потенциала полуволны от тока и, следовательно, от концентрации восстанавливающегося иона. Потенциал полуволны является, таким образом, качественной характеристикой иона в растворе данного фонового электролита, и определение потенциала полуволны составляет основу качественного полярографического анализа.

Количественный полярографический анализ основан на уравнении Ильковича, которое связывает диффузионный ток Id с концентрацией иона с и рядом других величин:

Id = 605 z D 1/2 m 2/3 t 1/6 c (3)

Где z — заряд иона; D – коэффициент диффузии; m – масса ртути, вытекающей из капилляра за 1 с, мг; t – время образования капли (периода капания), с.

В практике количественного полярографического анализа коэффициент пропорциональности межу концентрацией вещества и силой диффузионного тока обычно устанавливают с помощью стандартных растворов. При постоянных условиях полярографирования D , m , и t постоянны, поэтому уравнение (3) переходит в

При анализе некоторых систем, для которых применимость уравнения (4) установлена вполне надежно, часто используют менее трудоемкий метод стандартных растворов. Так же широко распространен в количественной полярографии и метод добавок.

Особое место в полярографическом анализе занимает амперометрическое титрование.

Амперометрическое титрование представляет собой разновидность полярографического метода анализа. Амперометрическое титрование проводится следующим образом: часть исследуемого раствора помещают в электролизер, снабженный индикаторным электродом и электродом сравнения. Между электродами устанавливают напряжение на 0,3 – 0,5 В больше потенциала полуволны (или редокс-потенциала) исследуемого вещества и приступают к титрованию. В процессе титрования отмечают показания гальванометра, на основании результатов строят кривую амперометрического титрования, откладывая на оси ординат показания гальванометра, а на оси абсцисс – объем титранта. Точка перегиба соответствует объему титранта в точке эквивалентности. Содержание определяемого вещества вычисляют по объему титранта, израсходованному в точке эквивалентности. Концентрация титранта должна превышать концентрацию раствора титруемого вещества в 10-15 раз.

При амперометрическом титровании индикаторными электродами могут быть ртутный капельный электрод, платиновый вращающийся и другие электроды. В качестве электродов сравнения применяют насыщенный каломельный, хлорсеребряный и другие электроды.

Вид кривой амперометрического титрования будет зависеть от того, какой компонент реакции титрования вступает в электродную реакцию и при каком потенциале ведется титрование. Сама реакция титрования, естественно, будет протекать независимо от этих условий.

Амперометрическое титрование следует проводить при потенциале, отвечающем области диффузионного тока. Обычно титруют при потенциале на 0,2-0,3 В более отрицательном, чем потенциал полуволны полярографически активного соединения.

Полярографическая установка служит для получения полярограмм, т.е . кривых зависимости силы тока, протекающего через раствор, от потенциала, приложенного к рабочему электроду. Прибор состоит из трех основных узлов: электролитической ячейки с рабочим электродом и электродом сравнения, источника напряжения для поляризации рабочего электрода и устройства для регистрации тока. В качестве неполяризующегося электрода сравнения используется слой ртути на дне ячейки. Применяются также и другие электроды сравнения: каломельный, ртутно-сульфатный, хлорсеребряный и др. Рабочим электродом может быть также твердый микроэлектрод, изготавливаемый из платины, золота, графита и других материалов.

Установка для амперометрического титрования может быть собрана на основе любого полярографа. Обычно для этой цели используется самая простая полярографическая установка. При этом рабочим может быть как ртутный капающий, так и твердый микроэлектрод. В качестве источников тока могут применяться аккумуляторные батареи и различные выпрямительные устройства. В комплект установки для титрования входят также микробюретка и магнитная мешалка.

Модуль 3. Лекция 8

Модуль 3. Лекция 8.

1. Полярографический анализ (полярография). Общие понятия, принцип метода.

Полярографический анализ (полярография) основан на использовании следующих зависимостей между электрическими параметрами электрохимической (в данном случае — полярографической) ячейки, к которой прилагается внешний потенциал, и свойствами содержащегося в ней анализируемого раствора.

а) В качественном полярографическом анализе используют связь между величиной приложенного на микроэлектроде внешнего электрического потенциала, при котором наблюдается восстановление (или окисление) анализируемого вещества на микроэлектроде в данных условиях, и природой восстанавливающегося (или окисляющегося) вещества.

б) В количественном полярографическом анализе используют связь между величиной диффузионного электрического тока, устанавливающегося в полярографической ячейке после достижения определенного значения приложенного на микроэлектроде электрического потенциала, и концентрацией определяемого (восстанавливающегося или окисляющегося) вещества в анализируемом растворе.

Электрические параметры — величину приложенного электрического потенциала и величину диффузионного тока — определяют при анализе получаемых поляризационных, или вольт-амперных, кривых, отражающих графически зависимость электрического тока в полярографической ячейке от величины приложенного потенциала микроэлектрода. Поэтому полярографию иногда называют прямой вольтамперометрией.

Рис. 1. Схема полярографической ячейки с ртутным капающим электродом и с ртутным анодом ) или с насыщенным каломельным электродом (б):

1 — ртутный капающий электрод, 2 — ртутный анод, 3 — анализируемый раствор, 4 — резервуар с жидкой ртутью, 5 — проводники к внешнему источнику постоянного тока, 6 — насыщенный каломельный электрод, 7— пробка из пористого стекла

Классический полярографический метод анализа с применением ртутного капающего (капельного) электрода был разработан и предложен в 1922 г. чешским ученым Ярославом Гейровским (1890—1967), хотя сам ртутный капающий электрод применялся чешским физиком Б. Кучерой еще в 1903 г. В 1925 г. Я. Гейровский и М. Шиката сконструировали первый полярограф, позволивший автоматически регистрировать поляризационные кривые. В дальнейшем были разработаны различные модификации полярографического метода.

Рассмотрим кратко сущность классической полярографии, основанной на использовании ртутного капающего микроэлектрода.

На рис. 1, а показана схема полярографической ячейки с ртутным капающим микроэлектродом — катодом. В сосуде, в который вносится анализируемый раствор с определяемым веществом, имеются два электрода — микрокатод и макроанод, подключенные к внешнему источнику постоянного электрического тока. На микрокатод прилагается постепенно возрастающий по абсолютной величине отрицательный электрический потенциал.

Рис. 2. Полярограмма водного щелочного 0,0005 моль/л раствора нитрата свинца при 25 °С ( i — ток, Е — потенциал):

1 — остаточный ток, 2 — предельный ток. Значения потенциала даны относительно насыщенного каломельного электрода, iD — диффузионный ток, Е1/2 — потенциал полуволны

Поверхность ртутного капающего микроэлектрода, т. е. ртутной капли, очень мала, тогда как поверхность анода — большая.

В качестве макроэлектрода — анода на практике наиболее часто применяют не ртутный, а насыщенный каломельный электрод (рис.1, б), по отношению к которому обычно и измеряют потенциал капающего ртутного микрокатода.

Анализируемый раствор содержит кроме определяемого вещества также индифферентный — фоновый — электролит (фон), ионы которого не разряжаются на электродах в условиях проведения полярографического анализа, а служат в качестве токопроводящих частиц для поддержания определенной величины электрического тока в ячейке, когда определяемое вещество еще не восстанавливается на микрокатоде.

Пусть определяемое вещество — это катионы Мn+, присутствующие в анализируемом растворе.

2.2. Полярографические кривые, потенциал полуволны, связь величины диффузионного тока с концентрацией.

На рис. 2. показано изменение электрического тока i, проходящего через полярографическую ячейку, как функции возрастающего потенциала Е, приложенного на ртутном капающем микрокатоде, — так называемая поляризационная, или вольт-амперная, кривая. При постепенном повышении приложенного потенциала вначале электрический ток, обусловленный присутствием ионов фонового электролита, растворенного кислорода и восстанавливающихся возможных примесей, возрастает очень медленно — остается почти постоянным. Это — так называемый остаточный ток. При некотором значении потенциала, называемого потенциалом выделения, ток в ячейке резко возрастает (фарадеевский ток) и при сравнительно небольшом дальнейшем повышении потенциала достигает максимального, возможного в данных условиях значения, после чего снова изменяется мало. Это — так называемый предельный ток. Разность между предельным и остаточным током составляет диффузионный ток iD.

Ртутная капля по мере ее формирования на конце капилляра (вытекания из капилляра) остается заряженной отрицательно до тех пор, пока она не оторвется от капилляра и окруженной раствором. В поверхностном приэлектродном слое раствора около ртутной капли находятся катионы Мn+ определяемого вещества, которые разряжаются на ртутной капле по схеме

амальгама металла М

при достижении величины потенциала выделения, характерного и специфичного только для данных катионов. После достижения потенциала выделения эти катионы очень быстро разряжаются на ртутной капле, поэтому электрический ток в полярографической ячейке резко возрастает. Концентрация катионов Мn+ в поверхностном приэлектродном слое раствора около ртутной капли столь же резко понижается (поскольку катионы восстанавливаются до металла) и становится меньше их концентрации в объеме анализируемого раствора.

Транспорт катионов Мn+ в поверхностный приэлектродный слой раствора, окружающий ртутную каплю, поддерживается за счет диффузии катионов Мn+ из объема раствора и зависит от скорости их диффузии. При дальнейшем повышении приложенного потенциала ртутных капель достигается максимально возможная скорость диффузии, которая остается практически постоянной, так что при данной концентрации катионов в растворе ток в полярографической ячейке также достигает максимального, практически постоянного значения. Устанавливается стационарный предельный ток.

Если концентрацию катионов Мn+ в растворе увеличить, то увеличится и число стационарно восстанавливающихся катионов, т. е. возрастает предельный и диффузионный ток. Таким образом, величина предельного и диффузионного тока в полярографической ячейке зависит от концентрации определяемого вещества (восстанавливающегося на ртутном капающем электроде) в анализируемом растворе, тогда как значение потенциала выделения зависит от природы разряжающихся частиц и не зависит от их концентрации.

Количество катионов, восстанавливающихся на ртутном капающем электроде, незначительно и практически не сказывается на изменении концентрации этих катионов в объеме раствора.

Вещество, разряжающееся на микрокатоде, называют деполяризатором, полярографически активным, электроактивным. Эти названия условны, поскольку вещество может быть полярографически неактивно при одном потенциале и полярографически активно при более высоком потенциале.

Вместо потенциала выделения на практике определяют потенциал полуволны Е1/2, соответствующий половине величины диффузионного тока (рис. 2.).

Полученную полярографическую кривую называют, как отмечалось выше, полярограммой, или полярографической волной. При использовании капающего ртутного электрода на полярограмме наблюдаются осцилляции тока (его периодическое небольшое увеличение и уменьшение). Каждая такая осцилляция соответствует возникновению, росту и отрыву ртутной капли от капилляра микрокатода.

В некоторых современных полярографах электрический ток измеряется только в конце каплеобразования, что позволяет устранить осцилляции на полярограмме.

На ртутном капающем микрокатоде происходит постоянное возобновление ртутных капель, на поверхности которых осуществляется разряд катионов. Поверхность такого электрода все время обновляется за счет новых ртутных капель, что исключает изменение его свойств вследствие проткающих на нем электрохимических процессов и составляет одно из главных достоинств использования ртутного капающего электрода.

Таким образом, при проведении качественного и количественного полярографического анализа используют два параметра, получаемые при рассмотрении полярограмм: потенциал полуволны Е1/2 и величину диффузионного тока iD (высоту h полярографической волны).

Как указывалось выше, потенциал полуволны Е1/2 характеризует природу восстанавливающегося катиона и не зависит от его концентрации. Для разных катионов, полярографируемых в одних и тех же условиях, он неодинаков, что и позволяет открывать различные катионы в растворе. Потенциал полуволны Е1/2 зависит, кроме природы самого восстанавливающегося вещества, от природы растворителя, фонового электролита, состава и pH анализируемого раствора, присутствия веществ-комплексообразователей, температуры. Величина потенциала полуволны открываемого или определяемого катиона должна быть меньше величины потенциала разряда ионов фонового электролита.

Рис. 3. Полярограмма раствора, содержащего катионы кадмия и свинца; i — ток, Е — приложенный потенциал относительно насыщенного каломельного электрода

В табл. 1. приведены в качестве примера значения потенциала полуволны для некоторых катионов с указанием состава фона. Из данных табл. 1. следует, что состав фона и pH раствора существенно влияют на величину потенциала полуволны.

Если в анализируемом растворе присутствуют несколько восстанавливающихся веществ, причем разность между значениями их потенциалов полуволны составляет не менее 0,2 В, то на полярограмме наблюдаются несколько волн (рис. 3.), каждая из которых отвечает тому или иному восстанавливающемуся веществу.

Таблица 1. Значения потенциала полуволны Е1/2 некоторых катионов металлов (относительно потенциала насыщенного каломельного электрода).

Количественный полярографический анализ

Количественный полярографический анализ

  • Количественный полярографический анализ Наиболее широко используемым количественным полярографическим анализом является метод градуировочного графика, основанный на уравнении (10.12). График создается по полярографическим данным некоторых стандартных решений.
  • Высота полярографической волны, пропорциональная интенсивности диффузионного тока, нанесена на вертикальной оси, а концентрация аналита — на горизонтальной оси. Согласно уравнению (10.12), калибровочный график должен представлять собой прямую линию через начало координат.

Если полярографические условия стандартного раствора и неизвестного образца в точности совпадают, этот метод дает точные результаты. Людмила Фирмаль

Полярографические условия включают условия работы капилляров, температуру и среду (фоновый электролит). Метод калибровочного графика является наиболее трудоемким, но наиболее точным. Анализ некоторых хорошо изученных систем, в которых применимость уравнения (10.12) очень надежно установлена, часто использует менее трудоемкие методы стандартных решений.

В этом методе полярограммы стандартного и аналитического растворов удаляются при одинаковых условиях, а неизвестная концентрация cx рассчитывается из отношения, основанного на уравнении (10.12). cx = cCJ A-, (10.13) cst — концентрация стандартного раствора. hx и / gst — высоты волн при анализе и полярографии стандартных растворов соответственно.

Этот метод может применяться только в условиях строгой стандартизации полярографических условий. Широко распространен в количественной полярографии Аддитивный тодд. При поляризации исследуемого раствора сила диффузионного тока составляет ix = kcx. (10.14) Добавить известное количество стандартного раствора C ^ к этому решению и снова определить диффузионный ток. / * + ct = / g (cx + cst). (10.15)

    В терминах деления (10.14) и (10.15) уравнения, —R1— =

, затем cx = c „1x. (10.16) ‘x + st cx to G s’ ‘x + st—’ X Соотношение (10,16) дает концентрацию анализируемого раствора. Вы также можете использовать графический метод. В этом случае результирующие данные строятся на графике / x + и ctT (рисунок 10.5).

В случае fx + ct, как показано в уравнении (10.16), когда Cx = Seth, то есть экстраполировано, прямая линия fx + ct = 0 на этом графике обрезает значение, равное концентрации вещества, определенной на горизонтальной оси. вы. Добавление автоматически учитывает эффекты фона и так называемого третьего компонента.

Это важное преимущество методов, которые можно использовать для анализа сложных смесей. Людмила Фирмаль

Если анализируемый раствор содержит некоторые вещества, восстановленные на ртутном катоде, как уже упоминалось, в подпрограмме появятся некоторые волны (см. Рисунок 10.2). Полуволна определяет качественный состав в зависимости от величины потенциала, а концентрация каждого компонента определяется интенсивностью диффузионного тока.

Так, например, полярограмма 10.2 на рисунке состоит из трех волн, каждая из которых характеризует один из компонентов смеси. Компонента А имеет полуволновой потенциал £ ‘/, (А) и диффузионный ток la (А). (Б) и т. Д. Этот метод был применен на практике, например, для измерения меди и цинка в рудах по одной полярограмме.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://pandia.ru/text/80/236/16484.php

http://lfirmal.com/kolichestvennyj-polyarograficheskij-analiz/