Количество корней уравнения по графику

Применение производной для решения нелинейных уравнений и неравенств

п.1. Количество корней кубического уравнения

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. \begin f(x)=ax^3+bx^2+cx+d\\ f'(x)=3ax^2+bx+c \end Если в уравнении \(f'(x)=0\) дискриминант \(D=4b^2-12ac=4(b^2-3ac)\gt 0\), кубическая парабола имеет две точки экстремума: \(x_<1,2>=\frac<-2b\pm\sqrt><6a>\). Если при этом значения функции в точках экстремума \(f(x_1)\cdot f(x_2)\lt 0\), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но \(f(x_1)\cdot f(x_2)=0\), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

1) \(x^3+3x^2-4=0\)
\(b^2-3ac=9\gt 0 (c=0) \)
\(f(x)=x^3+3x^2-4 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-4,\ f(x_2)=0 \)
\(f(x_1)\cdot f(x_2)=0\Rightarrow\) два корня
2) \(x^3+3x^2-1=0\)
\(b^2-3ac=9\gt 0 \)
\(f(x)=x^3+3x^2-1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-1,\ f(x_2)=3 \)
\(f(x_1)\cdot f(x_2)\lt 0\Rightarrow\) три корня
3) \(x^3+3x^2+1=0\)
\(b^2-3ac=9\gt 0\)
\(f(x)=x^3+3x^2+1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=1,\ f(x_2)=5 \)
\(f(x_1)\cdot f(x_2)\gt 0\Rightarrow\) один корень
4) \(x^3+x^2+x+3=0\)
\(b^2-3ac=1-3\lt 0 \)
Один корень

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>\)
б) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>=k\)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью \(y=1\). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=\frac1x+\frac<1>+\frac<1> $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: \(x\ne\left\<0;1;3\right\>\)
Все три точки – точки разрыва 2-го рода. \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-\infty-1-\frac13=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+\infty-1-\frac13=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1-\infty-\frac12=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1+\infty-\frac12=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12-\infty=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12+\infty=+\infty \end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные \(x=0, x=1, x=3\) – точки разрыва 2-го рода
2. Горизонтальные: \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-0-0-0=-0\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+0+0+0=+0\\ \end Горизонтальная асимптота \(y=0\)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: \(k=0\), нет.
4) Первая производная $$ f'(x)=-\frac<1>-\frac<1><(x-1)^2>-\frac<1><(x-3)^2>\lt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. \(x=0\) – асимптота
Точки пересечения с OX – две, \(0\lt x_1\lt 1,1\lt x_2\lt 3\)

7) График

Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь \(y=k\) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При \(k\lt 0\) — три корня
При \(k=0\) — два корня
При \(k\gt 0\) — три корня

Ответ: а) 3 корня; б) при \(k=0\) два корня, при \(k\ne 0\) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ \sqrt+\sqrt<10-2x>=a $$ имеет по крайней мере одно решение.

Исследуем функцию \(f(x)=\sqrt+\sqrt<10-2x>\)
ОДЗ: \( \begin x-1\geq 0\\ 10-2x\geq 0 \end \Rightarrow \begin x\geq 1\\ x\leq 5 \end \Rightarrow 1\leq x\leq 5 \)
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: \(f(1)=0+\sqrt<8>=2\sqrt<2>,\ f(5)=\sqrt<4>+0=2\)
Первая производная: \begin f'(x)=\frac<1><2\sqrt>+\frac<-2><2\sqrt<10-2x>>=\frac<1><2\sqrt>-\frac<1><\sqrt<10-2x>>\\ f'(x)=0\ \text<при>\ 2\sqrt=\sqrt<10-2x>\Rightarrow 4(x-1)=10-2x\Rightarrow 6x=14\Rightarrow x=\frac73\\ f\left(\frac73\right)=\sqrt<\frac73-1>+\sqrt<10-2\cdot \frac73>=\sqrt<\frac43>+\sqrt<\frac<16><3>>=\frac<6><\sqrt<3>>=2\sqrt <3>\end Промежутки монотонности:

\(x\)1(1; 7/3)7/3(7/3; 5)5
\(f'(x)\)+0
\(f(x)\)\(2\sqrt<2>\)\(\nearrow \)max
\(2\sqrt<3>\)
\(\searrow \)2

Можем строить график:

\(y=a\) — горизонтальная прямая.
Количество точек пересечения \(f(x)\) и \(y\) равно количеству решений.
Получаем:

$$ a\lt 2 $$нет решений
$$ 2\leq a\lt 2\sqrt <2>$$1 решение
$$ 2\sqrt<2>\leq a\lt 2\sqrt <3>$$2 решения
$$ a=2\sqrt <3>$$1 решение
$$ a\gt 2\sqrt <3>$$нет решений

По крайней мере одно решение будет в интервале \(2\leq a\leq 2\sqrt<3>\).

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство \(\frac<2+\log_3 x>\gt \frac<6><2x-1>\)

Разобьем неравенство на совокупность двух систем.
Если \(x\gt 1\), то \(x-1\gt 0\), на него можно умножить слева и справа и не менять знак.
Если \(x\lt 1\), то \(x-1\lt 0\), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: \(x\gt 0\)

Получаем совокупность: \begin \left[ \begin \begin x\gt 1\\ 2+\log_3 x\gt\frac<6(x-1)> <2x-1>\end \\ \begin 0\lt x\lt 1\\ 2+\log_3 x\lt\frac<6(x-1)> <2x-1>\end \end \right. \\ 2+\log_3 x\gt \frac<6(x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<6(x-1)-2(2x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<2x-4><2x-1>\\ \left[ \begin \begin x\gt 1\\ \log_3 x\gt\frac<2x-4> <2x-1>\end \\ \begin 0\lt x\lt 1\\ \log_3 x\lt\frac<2x-4> <2x-1>\end \end \right. \end Исследуем функцию \(f(x)=\frac<2x-4><2x-1>=\frac<2x-1-3><2x-1>=1-\frac<3><2x-1>\)
Точка разрыва: \(x=\frac12\) – вертикальная асимптота
Односторонние пределы: \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-0>=+\infty\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+0>=-\infty \end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: \(y=1\) \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-\infty>=1+0\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+\infty>=1-0 \end На минус бесконечности кривая стремится к \(y=1\) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=\left(1-\frac<3><2x-1>\right)’=\frac<3><(2x-1)^2>\gt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-\frac<6> <(2x-1)^3>$$ Одна критическая точка 2-го порядка \(x=\frac12\)

Количество корней уравнения по графику

Покажем, как задачи с параметрами можно решать графически.

Найдём количество решений уравнения

в зависимости от $$ a$$.

Искомое количество решений совпадает с числом точек пересечения графиков функций

График первой функции получается из графика функции, который был построен в предыдущем примере. Для этого нужно воспользоваться преобразованием вида ПР1 то есть график $$ y=_<1>\left(x\right)$$ имеет такой вид, как показано на рис. 43 $$ f\left(0\right)=\sqrt<5>$$.

Графиком функции $$ y=a$$ будет прямая, параллельная оси $$ Ox$$ (рис. 43). При этом она пересекает ось ординат в точке $$ (0,a)$$. Легко видеть, что при $$a 3$$ прямая $$ y=a$$ не имеет пересечений с графиком $$ y=_<1>\left(x\right)$$, при $$ a=3$$ и $$ a\in [0;\sqrt<5>)$$ есть две точки пересечения, а при $$ a\in [\sqrt<5>;3)$$ – четыре общие точки и при $$ a=\sqrt<5>$$ – три общие точки. Остаётся лишь сформулировать ответ.

При $$ a\in (-\infty ;0)\bigcup (3;+\infty )$$ решений нет, при $$ a\in [0;\sqrt<5>)\bigcup \left\<3\right\>$$ – два решения, при $$ a\in \left\<\sqrt<5>\right\>$$ – три решения, при $$ a\in (\sqrt<5>;3)$$ – четыре решения.

Найдём количество решений уравнения в зависимости от $$ a$$:

Методом интервалов нетрудно построить график функции

Количество решений уравнения совпадает с числом точек пересечения этого графика с прямой $$ f\left(x\right)=a$$ (рис. 44).

Проанализировав график, несложно выписать ответ.

При $$ a\in (8;+\infty )$$ уравнение имеет 2 решения, при $$ a=8$$ уравнение имеет бесконечно много решений, при $$ a\in (-\infty ;8)$$ решений нет.

Рассмотрим ещё один пример задач с параметром, где используется построение множеств, задаваемых уравнениями с модулем. Напомним, что графиком уравнения называют линию на плоскости, на которой лежат те и только те точки, координаты которых удовлетворяют этому уравнению.

Найдём количество решений системы уравнений

в зависимости от $$ a$$.

Для решения необходимо построить график уравнения $$ \left|x\right|+\left|y\right|=4$$. Это можно сделать, последовательно выполнив построения таких графиков:

График второго уравнения – окружность с центром в точке $$ O(0;0)$$ и радиусом $$ \left|a\right|$$. Изобразим оба этих графика на координатной плоскости $$ xOy$$.

Как видим, при $$|a| 4$$ графики не пересекаются. При $$ \left|a\right|=2\sqrt<2>$$ или $$ \left|a\right|=4$$ есть 4 точки пересечения. При остальных $$ a$$ есть 8 точек пересечения. Таким образом, можно сформулировать ответ.

При $$ a\in (-\infty ;-4)\cup (-2\sqrt<2>;2\sqrt<2>)\cup (4;+\infty )$$ система не имеет решений;

при $$ a\in \<-4;-2\sqrt<2>;2\sqrt<2>;4\>$$ система имеет 4 решения;

при $$ a\in (-4;-2\sqrt<2>)\cup (2\sqrt<2>;4)$$ система имеет 8 решений.

В следующей задаче нам потребуется понятие локального экстремума функции. Говорят, что функция $$ y=f\left(x\right)$$ имеет локальный максимум в точке $$ _<0>$$, если для некоторого числа $$ε > 0$$ при $$|x − x_0| 0$$ при $$|x − x_0| 0$$ график $$ y=at-3$$ касается линии $$ y=\sqrt$$ (cм. рис. 46). Уравнение $$ D=0$$ имеет единственный положительный корень `a=1/4`. Следовательно, `a_2=1/4`. Если $$\dfrac3<16>\leq a 1/4` они не имеют общих точек.

Рассмотрим пример использования этого правила в задаче.

Найдём все значения параметра $$ a$$, при которых система

имеет хотя бы одно решение.

Неравенство системы после выделения полных квадратов можно записать в виде $$ ^<2>-8\left|x\right|+16+^<2>-8\left|y\right|+16\le 1$$ или $$ \left(\right|x|-4<)>^<2>+(\left|y\right|-4<)>^<2>\le 1$$. Множество $$ E$$ решений этого неравенства – объединение кругов $$ _<1>$$, $$ _<2>$$, $$ _<3>$$, $$ _<4>$$ (вместе с их границами) радиуса $$ 1$$ (см. рис. 47) с центрами $$ _<1>(4;4)$$, $$ _<2>(4;-4)$$, $$ _<3>(-4;-4)$$, $$ _<4>(-4;4)$$. Запишем уравнение системы в виде

Это уравнение задаёт окружность $$ L$$ радиуса $$ \left|a\right|$$ с центром в точке $$ M(0;1)$$, или точку $$ (0;1)$$ при $$ a=0$$. Исходная система имеет хотя бы одно решение при тех значениях $$ a$$, при которых окружность $$ L$$ имеет общие точки с множеством $$ E$$. При этом ввиду симметричного расположения соответствующих пар кругов относительно оси ординат достаточно выяснить, при каких значениях $$ a$$ окружность $$ L$$ имеет общие точки с кругами, центрами которых являются точки $$ _<1>$$ и $$ _<2>$$. Проведём из точки $$ M$$ лучи $$ _<1>$$ и $$ _<2>$$ в направлении точек $$ _<1>$$ и $$ _<2>$$. Пусть $$ _<1>$$ и $$ _<1>$$ – точки пересечения $$ _<1>$$ и окружности с центром $$ _<1>$$, $$ _<2>$$ и $$ _<2>$$ – точки пересечения $$ _<2>$$ и окружности с центром $$ _<2>$$. Тогда из геометрических соображений имеем:

При $$ 4\le \left|a\right|\le 6$$ окружность с центром $$ M$$ имеет общие точки с кругом $$ <\omega >_<1>$$ , а при $$ \sqrt<41>-1\le \left|a\right|\le \sqrt<41>+1$$ – с кругом $$ <\omega >_<2>$$.

а) Если $$b 0$$. Эта система не имеет решений при $$ a=0$$ и поэтому $$b 0$$. Теперь мы прибегнем к графическому методу. Рассмотрим два случая: $$0 1$$. Если $$b > 1$$, то $$\sqrt Эта система не имеет решений, так как прямая $$ y=x-b$$ не пересекает график функции $$ y=|^<2>-b|$$ (см. рис. 48). Если $$0 0$$).

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости.

Найдём все значения `a`, при каждом из которых уравнение

Рассмотрим функции `f(x)-a|x-3|` и `g(x)=5/(x+2)`.

Если построить график функции `f(x)` для разных `a` (рис. 50) и график функции `g(x)` (рис. 51), то можно без проблем исследовать на промежутке `[0;+oo)` уравнение `f(x)=g(x)`.

При `a При `a>0` функция `f(x)` возрастает на промежутке `(3;+oo)`. Функция `g(x)` убывает на этом промежутке, поэтому уравнение `f(x)=g(x)` всегда имеет ровно одно решение на промежутке `(3;+oo)`, поскольку `f(3) g(3+1/a)`. На промежутке `[0;3]` уравнение `f(x)=g(x)` принимает вид `3a-ax=5/(x+2)`. Это уравнение сводится к уравнению `ax^2-ax+(5-6a)=0`. Будем считать, что `a>0`, поскольку случай `a

Пусть уравнение имеет два корня, то есть `a>4/5`. Тогда оба корня меньше `3`, поскольку при `x>=3` значения функции `3a-ax` неположительны, а значения функции `5/(x+2)` положительны. По теореме Виета сумма корней равна `1`, а произведение равно `5/6-6`. Значит, больший корень всегда принадлежит промежутку `[0;3]`, а меньший принадлежит этому промежутку тогда и только тогда, когда `5/a-6>=0`, то есть `a 5/6`;

– три корня при `4/5

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости. В следующем примере будем использовать известный подход к задачам, содержащим некоторые переменные в квадрате. Суть этого подхода — рассмотрение выражения как квадратичной функции относительно какой-нибудь переменной (остальные переменные при этом считаются параметрами) с последующим использованием известных свойств квадратичной функции.

Найдём все значения параметра $$ a$$, при каждом из которых система уравнений

имеет ровно три решения.

Первое уравнение данной системы равносильно совокупности двух уравнений $$ |y+9|+|x+2|=2$$ и $$ ^<2>+^<2>=3$$. Первое из них задаёт квадрат $$ G$$ с центром $$ (-2;-9)$$, диагонали которого равны $$ 4$$ и параллельны осям координат. Второе задаёт окружность $$ S$$ с центром $$ (0;0)$$ радиуса $$ \sqrt<3>$$ (см. рис. 52).

Второе уравнение исходной системы при $$a > 0$$ задаёт окружность $$ \Omega $$ с центром $$ (-2;-4)$$ радиуса $$ R=\sqrt$$.

Отметим, что при $$a Рассмотрев случаи внешнего и внутреннего касания окружностей $$ \Omega $$ и $$ S$$, можно заключить, что они имеют ровно `1` общую точку при $$ R=\sqrt<20>\pm \sqrt<3>$$, ровно `2` общие точки при $$ R\in (\sqrt<20>-\sqrt<3>;\sqrt<20>+\sqrt<3>)$$ и ни одной общей точки при остальных $$ R$$. Поскольку центры окружности $$ \Omega $$ и квадрата $$ G$$ лежат на прямой $$ x=-2$$, то $$ \Omega $$ и $$ G$$ имеют ровно `1` общую точку при $$ R=3$$ или $$ R=7$$, ровно `2` общие точки при $$ R\in (3;7)$$ и ни одной общей точки при остальных значениях $$ R$$. Для того чтобы у системы было 3 решения, необходимо и достаточно, чтобы окружность $$ \Omega $$ имела `2` общие точки с квадратом $$ G$$ и `1` общую точку с окружностью $$ S$$ или наоборот. Рассмотрим значения $$ R$$, при которых окружность $$ \Omega $$ имеет с квадратом $$ G$$ или окружностью $$ S$$ ровно `1` общую точку.

1) $$ R=\sqrt<20>+\sqrt<3>$$. Тогда есть ровно `1` общая точка с окружностью $$ S$$, и ровно `2` общие точки с квадратом $$ G$$ (т. к. $$3 \sqrt <20>+ \sqrt<3>$$), т. е. у системы 1 решение.

Итак, подходят $$ R=3$$ и $$ R=\sqrt<20>+\sqrt<3>$$. Тогда искомые значения параметра $$ a=<3>^<2>=9$$ и $$ a=(\sqrt<20>+\sqrt<3><)>^<2>=23+4\sqrt<15>$$.

Презентация на тему: Нахождение корней систем уравнений и уравнений с помощью графиков

Нахождение корней систем уравнений и уравнений с помощью графиковУчитель: Коптелова Вера Ивановна

Повторение, алгебра:Свойства и графики функций:Линейная функция: у = Kх+b

Свойства и графики функций:

Свойства и графики функций:

Свойства и графики функций:

Свойства и графики функций:

Свойства и графики функций:

Для какой функции построили график в электронной таблице?

Для какой функции построили график в электронной таблице?

Для какой функции построили график в электронной таблице?

Для какой функции построили график в электронной таблице?

В тетрадях схематически изобразите графики этих функций.

Зная, что прямая х=0 – ось симметрии данного графика, какая из двух кривых является продолжением этого графика

Зная, что точка (0;0) – точка симметрии данного графика, какая из двух кривых является продолжением этого графика

Какие формулы, написанные при построении графиков в электронной таблице, соответствуют функциям:

Расставьте по порядку алгоритм построения графика функции у = 2х3 – 3х2 +4х в электронной таблице:

Почему в электронной таблице в ходе построения графика в таблице значений у появилась запись Ошибка:502Какой из двух графиков соответствует данной функции? Для построения этого графика как надо выделить диапазон, чтобы график получился правильным?

Какая функция соответствует графику, построенных в электронной таблице?

Как вы думаете, сколько раз пересекаются эти графики?Что нужно сделать при построении этих графиков в электронной таблице, чтобы были видны все точки пересечения?А при построении в тетради?

Где проще будет построить график этой функции – в тетради или электронной таблице?Как на построенном графике увидеть нули функции?

Сколько общих точек имеют графики функций?Как можно с помощью графиков узнать сколько решений имеет система уравнений?

1) Как с помощью графиков (в электронной таблице) узнать имеет ли решение система уравнений?Графики пересекаются в двух точкахОтвет: данная система имеет 2 решения

2) Как узнать с помощью графиков сколько решений имеет система уравнений?

3) Как с помощью графиков можно определить количество корней уравнения?1.Строим график функции у = х3 + х — 4 2.На графике находим нули функции (точки пересечения графика с осью абсцисс)

4) Можно ли найти решения данного уравнения? Как это можно сделать?1способ: Построить график функции и на графике найти нули функции.2способ: Построить два графика функций, одна из которых другая: Можно ли второй способ использовать при решении уравнений без электронной таблицы? Алгоритм этого решения…

Закрепление материала:1. В электронной таблице найти количество корней системы уравнений:2. Сколько корней имеет уравнение:

3. Найти количество корней системы уравнений, не используя электронную таблицу ( т.е. схематически изобразив графики функций)4. Найти количество корней уравнения, не используя электронную таблицу

5) Где быстрее строятся графики: в тетради или электронной таблице?) Что нужно соблюдать при построении графиков функций, чтобы получить полную информацию о количестве решений системы уравнений или уравнения?7) Что нужно знать о построении графиков функций, если электронной таблицей нельзя пользоваться?

Задание на дом:1. Найти количество решений систем уравнений.3. Схематически изобразив графики функций, найдите количество решений а) системы уравнений, б)уравнения


источники:

http://zftsh.online/articles/4714

http://ppt4web.ru/geometrija/nakhozhdenie-kornejj-sistem-uravnenijj-i-uravnenijj-s-pomoshhju-grafikov.html