Комплексно сопряженное уравнение это как

Комплексно сопряженные числа

Если $z=a+b i$, то число $\overline=a-b i$ называется комплексным сопряженным к числу $z$ .

То есть у комплексно сопряженных чисел действительные части равны, а мнимые отличаются знаком.

Например. Комплексно сопряженным к числу $z=2-i$ есть число $\overline=2+i$ .

На комплексной плоскости комплексно сопряжённые числа получаются зеркальным отражением друг друга относительно действительной оси.

Свойства комплексно сопряженных чисел

1) Если $z=\overline$, то можно сделать вывод, что рассматриваемое число $z$ является действительным.

Например. $z=2 \in R \Rightarrow \overline=2$ и $z=\overline$

2) Для любого комплексного числа $z$ сумма $z+\overline=2 \operatorname z$ — действительное число.

Например. Пусть $z=2-3 i$, тогда $\overline=2+3 i$, а тогда

$z+\overline=2-3 i+(2+3 i)=2-3 i+2+3 i=2+2=4 \in R$

3) Для произвольного комплексного числа $z=a+b i$ произведение $z \cdot \overline=|z|^ <2>\in R$ .

Например. Пусть $z=2-3 i$, комплексно сопряженное к нему число $\overline=2+3 i$, тогда произведение

4) Модули комплексно сопряженных чисел равны: $|z|=|\overline|$, а аргументы отличаются знаком (рис. 1).

5) $\overline \pm z_<2>>=\overline_ <1>\pm \overline_<2>$

6) $\overline \cdot z_<2>>=\overline> \cdot \overline_<2>$

9) Если $z=a+b i$ и $\overline=a-b i$ — комплексно сопряженные числа, то

Что такое комплексно сопряженные числа

В данной публикации мы рассмотрим, что такое комплексно сопряженные числа, а также перечислим их основные свойства. Представленная теоретическая информация сопровождается практическими примерами для лучшего понимания.

Определение комплексно сопряженных чисел

Дано комплексное число . Комплексно сопряженным к нему является число (для обозначения используется черточка сверху).

Таким образом, у комплексно сопряженных чисел действительные части одинаковые, а мнимые отличаются по знаку.

Пример:
Для числа комплексно сопряженным является .

Геометрическая интерпретация

Если перенести комплексно сопряженные числа на комплексную плоскость, то они будут зеркальным отражением друг друга относительно действительной оси (RE).

Свойства комплексно сопряженных чисел

1. Если z = z , значит число z является действительным.

Пример:
z = 2, значит , следовательно , т.е. .

2. Модули комплексно сопряженных чисел равны, т.е. . А так как такие числа на комплексной плоскости зеркальны, то их аргументы отличаются по знаку.

3. Сумма комплексно сопряженных чисел – это действительное число: .

4. Произведение комплексно сопряженных чисел равняется квадрату их модуля и является действительным числом: .

Модуль считается так:

5. Для и справедливо:

6. Для произвольных комплексных чисел z1 и z2 :

Комплексные числа

Алгебраическая форма записи комплексных чисел
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Деление комплексных чисел, записанных в алгебраической форме
Изображение комплексных чисел радиус-векторами на координатной плоскости
Аргумент комплексного числа
Тригонометрическая форма записи комплексного числа
Формула Эйлера. Экспоненциальная форма записи комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Извлечение корня натуральной степени из комплексного числа

Алгебраическая форма записи комплексных чисел

Пусть x и y — произвольные вещественные числа.

Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

Множество комплексных чисел является расширением множества вещественных чисел, поскольку множество вещественных чисел содержится в нём в виде пар (x, 0) .

Комплексные числа, заданные парами (0, y) , называют чисто мнимыми числами .

Для комплексных чисел существует несколько форм записи: алгебраическая форма записи, тригонометрическая форма записи и экспоненциальная (показательная) форма записи .

Алгебраическая форма — это такая форма записи комплексных чисел, при которой комплексное число z, заданное парой вещественных чисел (x, y) , записывается в виде

z = x + i y .(1)

где использован символ i , называемый мнимой единицей .

Число x называют вещественной (реальной) частью комплексного числа z = x + i y и обозначают Re z .

Число y называют мнимой частью комплексного числа z = x + i y и обозначают Im z .

Комплексные числа, у которых Im z = 0 , являются вещественными числами .

Комплексные числа, у которых Re z = 0 , являются чисто мнимыми числами .

Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

Умножение комплексных чисел z1 = x1 + i y1 и z2 = x2 + i y2 , так же, как и операции сложения и вычитания, осуществляется по правилам умножения двучленов (многочленов), однако при этом учитывается важнейшее равенство, имеющее вид:

i 2 = – 1 .(2)

По этой причине

Комплексно сопряженные числа

Два комплексных числа z = x + iy и у которых вещественные части одинаковые, а мнимые части отличаются знаком, называются комплексно сопряжёнными числами .

Операция перехода от комплексного числа к комплексно сопряженному с ним числу называется операцией комплексного сопряжения , обозначается горизонтальной чертой над комплексным числом и удовлетворяет следующим свойствам:

Модуль комплексного числа

Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле

Для произвольного комплексного числа z справедливо равенство:

а для произвольных комплексных чисел z1 и z2 справедливы неравенства:

Замечание . Если z — вещественное число, то его модуль | z | равен его абсолютной величине.

Деление комплексных чисел, записанных в алгебраической форме

Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле

Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

Деление на нуль запрещено.

Изображение комплексных чисел радиус-векторами координатной плоскости

Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

Назовем рассматриваемую плоскость комплексной плоскостью , и будем представлять комплексное число z = x + i y радиус–вектором с координатами (x , y).

Назовем ось абсцисс Ox вещественной осью , а ось ординат Oy – мнимой осью .

При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Аргумент комплексного числа

Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа z .

Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором z .

Аргумент комплексного числа z считают положительным, если поворот от положительного направления вещественной оси к радиус-вектору z происходит против часовой стрелки, и отрицательным — в случае поворота по часовой стрелке (см. рис.).

Считается, что комплексное число нуль аргумента не имеет.

Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где k — произвольное целое число, то вводится, главное значение аргумента , обозначаемое arg z и удовлетворяющее неравенствам:

Тогда оказывается справедливым равенство:

Если для комплексного числа z = x + i y нам известны его модуль r = | z | и его аргумент φ , то мы можем найти вещественную и мнимую части по формулам

(3)

Если же комплексное число z = x + i y задано в алгебраической форме, т.е. нам известны числа x и y , то модуль этого числа, конечно же, определяется по формуле

(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.

Таблица 1. – Формулы для определения аргумента числа z = x + i y

y z

Расположение
числа z
Знаки x и yГлавное значение аргументаАргументПримеры
Положительная
вещественная
полуось
0φ = 2kπ
Первый
квадрант
Положительная
мнимая
полуось
Второй
квадрант
Отрицательная
вещественная
полуось
Положительная
вещественная
полуось
Знаки x и y
Главное
значение
аргумента
0
Аргументφ = 2kπ
Примеры
Расположение
числа z
Первый
квадрант
Знаки x и y
Главное
значение
аргумента
Аргумент
Примеры
Расположение
числа z
Положительная
мнимая
полуось
Знаки x и y
Главное
значение
аргумента
Аргумент
Примеры
Расположение
числа z
Второй
квадрант
Знаки x и y
Главное
значение
аргумента
Аргумент
Примеры

x z

x z

y z

Положительная вещественная полуось

Главное значение аргумента:

Расположение числа z :

Главное значение аргумента:

Расположение числа z :

Положительная мнимая полуось

Главное значение аргумента:

Расположение числа z :

Главное значение аргумента:

Расположение числа z :

Отрицательная вещественная полуось

Отрицательная мнимая полуось

x z = x + i y может быть записано в виде

Расположение
числа z
Отрицательная
вещественная
полуось
Знаки x и yТретий
квадрант
Знаки x и yОтрицательная
мнимая
полуось
Знаки x и yЧетвёртый
квадрант
Знаки x и y
z = r (cos φ + i sin φ) ,(5)

где r и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству r > 0 .

Запись комплексного числа в форме (5) называют тригонометрической формой записи комплексного числа .

Формула Эйлера. Экспоненциальная форма записи комплексного числа

В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :

cos φ + i sin φ = e iφ .(6)

Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде

z = r e iφ ,(7)

где r и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству r > 0 .

Запись комплексного числа в форме (7) называют экспоненциальной (показательной) формой записи комплексного числа .

Из формулы (7) вытекают, в частности, следующие равенства:

а из формул (4) и (6) следует, что модуль комплексного числа

или, что то же самое, числа e iφ , при любом значении φ равен 1.

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме

Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.

Действительно, умножение и деление двух произвольных комплексных чисел и записанных в экспоненциальной форме, осуществляется по формулам

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.

Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле

Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Извлечение корня натуральной степени из комплексного числа

Пусть — произвольное комплексное число, отличное от нуля.

Корнем n — ой степени из числа z0 , где называют такое комплексное число z = r e iφ , которое является решением уравнения

z n = z0 .(8)

Для того, чтобы решить уравнение (8), перепишем его в виде

и заметим, что два комплексных числа, записанных в экспоненциальной форме, равны тогда и только тогда, когда их модули равны, а разность аргументов равна 2kπ , где k — произвольное целое число. По этой причине справедливы равенства

следствием которых являются равенства

(9)

Из формул (9) вытекает, что уравнение (8) имеет n различных корней

(10)

причем на комплексной плоскости концы радиус-векторов zk при k = 0 , . , n – 1 располагаются в вершинах правильного n — угольника, вписанного в окружность радиуса с центром в начале координат.

Замечание . В случае n = 2 уравнение (8) имеет два различных корня z1 и z2 , отличающихся знаком:

Пример 1 . Найти все корни уравнения

то по формуле (10) получаем:

Пример 2 . Решить уравнение

Решение . Поскольку дискриминант этого квадратного уравнения отрицателен, то вещественных корней оно не имеет. Для того, чтобы найти комплексные корни, выделим, как и в вещественном случае, полный квадрат:


источники:

http://microexcel.ru/kompleksno-sopryajennye-chisla/

http://www.resolventa.ru/spr/algebra/complex.htm