Комплексное уравнение с двумя переменными

Примеры действий с комплексными числами, решение уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Решение уравнений с комплексными числами

Задача 1 . Решите уравнение (2 − i) x + (5 + 6i) у = 1 − 3i

относительно действительных переменных х и у.

Решение. Левую часть уравнения можно рассматривать, как некоторое неизвестное комплексное число. Приведя его к виду a + bi получаем уравнение, равносильное данному:

(2х + 5у ) + (− х + 6у ) i = 1 − 3i .

Так как два комплексных числа равны тогда и только тогда, когда равны их действительные и мнимые части, приходим к системе:

Решая эту систему, получаем : х = ; у = .

Ответ: х = ; у = ; .

Задача 2 . При каких действительных значениях х и у

комплексные числа z1 = x2 + yi − 5 − и z2 = –у – х2 i – 4i будут сопряженными?

Решение. Комплексные числа z1 = (х2 — 5) + (у + 7i) и z2 = (–у) – (х + 4)i будут комплексно сопряженными, если выполняются условия :

Решая полученную систему, находим: х1 = 2 , у1 = 1 ; х2 = −2 , у2 = 1 .

Задача 3. При каких действительных значениях х и у комплексные числа:

z1 = 2×2 – yi −1− и z2 = у –3 + х2i – 2i будут равными?

Решение. Комплексные числа z1= (2х2 –1)+ (3 – y)i, z2 = (у–3) + (х2–2)i будут равными, если выполняются условия:

Решая систему, находим: х1 = −1 , у1 = 4 ; х2 = 1 , у2 = 4 .

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:


где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = <0, 1, 2, 3, …n-1 >.

Пример 1. Найти все корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:


Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Пример 2. Найти все корни уравнения

Найдем дискриминант уравнения:


Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Найдем корни уравнения:


Ответ:

Пример 3. Найти все корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = <0, 1, 2, 3>. Найдем модуль комплексного числа:

Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Пример 4. Найти корни уравнения


Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:


Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.

Комплексное уравнение с двумя переменными

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

© Контрольная работа РУ — примеры решения задач


источники:

http://matematyka.ru/reshenie-uravnenij-s-kompleksny-mi-chislami/

http://www.kontrolnaya-rabota.ru/diario/96-reshenie-uravnenij-kompleksnymi-chislami/