Комплексные числа в уравнениях кривого порядка

Комплексные числа и их приложение к решению уравнений третьей и четвертой степени (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

КОМПЛЕКСНЫЕ ЧИСЛА И ИХ

ПРИЛОЖЕНИЕ К РЕШЕНИЮ

И ЧЕТВЕРТОЙ СТЕПЕНИ

Учебное пособие для студентов

кандидат физико-математических наук, доцент

Комплексные числа и их приложение к решению уравнений 3-й и 4-й степени. Учебное пособие для студентов физико-математического факультета / сост.: – Воронежский госпедуниверситет, 2010. – 92 с.

Учебное пособие представляет собой курс лекций и практических занятий по теме «Комплексные числа». Пособие делится на четыре части: комплексные числа в алгебраической форме, геометрическая интерпретация комплексных чисел, комплексные числа в тригонометрической форме, приложение теории комплексных чисел к решению кубических уравнений и уравнений 4-й степени. В заключение приводится краткий исторический обзор формирования понятия комплексного числа и действий над комплексными числами.

Предназначено для студентов физико-математического факультета Воронежского госпедуниверситета.

Теория комплексных чисел является составной частью курса «Высшая алгебра» в педагогических вузах и предполагает глубокое знание ее основ, а также методов и приемов, применяемых при решении широкого класса задач как алгебраического, так и геометрического содержания. Будущие учителя должны грамотно и непринужденно оперировать с основными понятиями, действиями и интерпретациями комплексных чисел, поскольку азы теории комплексных чисел являются частью учебной программы по математике для профильных классов. Это объясняется тем, что, будучи непосредственным обобщением понятия действительного числа, комплексное число является завершающим элементом в стройной и строгой логической
конструкции понятия числа.

Алгебраическая природа комплексного числа состоит в том, что комплексное число есть элемент алгебраического расширения С поля действительных чисел R , получаемого присоединением к полю R корня i многочлена f(x) = x2 + 1 . Получающееся таким путем поле С называется полем комплексных чисел.

Наиболее важное свойство комплексных чисел состоит в том, что оно алгебраически замкнуто, т. е. любой многочлен с коэффициентами из С разлагается на линейные множители. Иначе это свойство алгебраической замкнутости выражается в том, что любой многочлен степени n ≥ 1 с коэффициентами из С имеет в поле комплексных чисел по крайней мере один корень (теорема Даламбера – Гаусса).

Изучение теории комплексных чисел выполняет следующие образовательные функции.

1) Расширение математического кругозора и повышение математической культуры учащихся.

Наличие у комплексных чисел более тесной, нежели у других числовых множеств, связи с геометрией (в частности, с векторным исчислением) представляет широкие возможности, с одной стороны, применения алгебраических методов к решению геометрических
задач (задачи на построение ГМТ), а с другой стороны, наглядных геометрических интерпретаций различных алгебраических операций (действий с комплексными числами в тригонометрической форме).

2) Логическое завершения развития понятия числа.

3) Выделение из множества всех алгебраических уравнении лишь тех, которые решаются в радикалах, т. е. для которых существуют формулы, выражающие корни уравнения через его коэффициенты.

Сюда относится решение уравнений 3-й степени (и сводящихся к ним уравнений 4-й степени), поскольку по теореме Абеля: «Ни для какого натурального числа нельзя указать формулу, которая выражала бы корни любого уравнения п-й степени через его коэффициенты при помощи радикалов».

В первой главе пособия сначала вводится понятие комплексного числа в алгебраической форме, определяются операции сложения, вычитания, умножения, деления, а также операция сопряжения для комплексных чисел в алгебраической форме; излагается правило извлечения квадратного корня из комплексного числа.

Во второй главе изучается геометрическая интерпретация комплексных чисел в виде точек или векторов комплексной плоскости.

В третьей главе рассмотрены действия над комплексными числами в тригонометрической форме.

Четвертая глава посвящена решению уравнений 3-й и 4-й степеней.

Завершает пособие краткая историческая справка о возникновении понятия комплексного числа.

Особенностью изложения материала является форма в виде лекционных и практических занятий. Эта форма выбрана для удобства использования представленного материала как преподавателями, так и студентами. В конце каждой из первых трех глав приведены примерные варианты контрольных работ.

Глава 1. КОМПЛЕКСНЫЕ ЧИСЛА В АЛГЕБРАИЧЕСКОЙ ФОРМЕ

Занятие 1. Введение понятия комплексного числа.

Сложение, вычитание, умножение и деление комплексных чисел. Степени мнимой единицы

Понятие числа прошло длинный исторический путь. В процессе развития математики числовая система расширялась не один раз. Уже на ранних этапах развития человечества в результате счета возникают натуральные числа. Постепенно складывается представление о бесконечности множества натуральных чисел и появляется понятие натурального ряда бесконечной последовательности чисел 1, 2, 3, 4, 5, . . Затем возникают дроби, нуль, отрицательные числа, необходимые для
решения линейных уравнений вида

Поскольку рациональных чисел было достаточно для того, чтобы с любой степенью точности выразить результат любого измерения, то долгое время считали, что результат измерения всегда выражается или натуральным числом, или отношением двух таких чисел, т. е. дробью.

Однако еще в школе Пифагора был обнаружен тот факт, что диагональ квадрата несоизмерима с его стороной и поэтому не может быть точно выражена рациональным числом. Это открытие привело в конце концов к тому, что в математику вошли иррациональные числа.

Рациональные числа вместе с иррациональными образуют множество действительных чисел, которое является расширением множества рациональных чисел, поскольку на нем также определены четыре арифметических действия: сложение, вычитание, умножение и деление (кроме деления на нуль).

Важное место в алгебре занимает решение алгебраических уравнений, т. е. уравнений вида

,

где а0, а1, . . . , аn — действительные числа. Однако оказалось, что для решения таких уравнений действительных чисел явно не достаточно. Например, действительных корней не имеет квадратное уравнение с отрицательным дискриминантом. Простейшим таким уравнением является уравнение

Для того чтобы это уравнение имело решение, необходимо расширить множество действительных чисел путем присоединения к нему корня уравнения

Обозначим этот корень через i. Таким образом, по определению

Символ i называется мнимой единицей. С его помощью и с помощью пары действительных чисел а и b составляется выражение вида

Полученные выражения назвали комплексными числами, поскольку они содержали как действительную, так и мнимую части (от французских слов rее1 – действительный и imaginaire – мнимый, воображаемый). Название комплексное переводится как составное — по виду выражения z = a+bi.

Итак, комплексными числами называются выражения вида

где а и b действительные числа, а i некоторый символ,
удовлетворяющий условию i= . Число а называется
действительной частью комплексного числа z=a+bi, а
число b его мнимой частью. Для их обозначения используются символы

Комплексные числа вида z=a+0∙i являются
действительными числами и, следовательно, множество комплексных чисел содержит в себе множество действительных чисел. Если потребовать, как мы сделаем это ниже, чтобы операции сложения и умножения комплексных чисел не выводили за пределы множества комплексных чисел и обладали всеми свойствами одноименных операций на множестве действительных чисел, то множество комплексных чисел будет расширением множества действительных чисел.

Комплексные числа вида z=0+bi называются чисто
мнимыми.

Два комплексных числа z1=a1+b1i и z2=a2+b2i
называются равными, если равны их действительные и мнимые части, т. е. если выполняются равенства

Определим операции сложения и умножения комплексных чисел.

Суммой двух комплексных чисел и называется комплексное число вида

.

Произведение двух комплексных чисел z1=a1+b1i и z2=a2+b2i можно найти, почленно умножая числа z1 и z2:

.

Таким образом, произведением двух комплексных чисел z1=a1+b1i и z2=a2+b2i называется комплексное число z1 ∙ z2 вида

.

Пример. Найдите сумму комплексных чисел z1= 2 + 3i и z2= 3 – i.

Пример. Найдите произведение комплексных чисел z1= 2 + 3i и z2= 1 – i .

Свойства операций сложения и умножения комплексных чисел

Каковы бы ни были комплексные числа , справедливы следующие равенства.

1. Коммутативный (переместительный) закон сложения:

.

2. Ассоциативный (сочетательный) закон сложения:

.

3. Коммутативный закон умножения:

.

4. Ассоциативный закон умножения:

.

5. Дистрибутивный (распределительный) закон умножения относительно сложения:

.

Проведем доказательство свойства 3 (остальные свойства доказываются аналогично).

Доказательство. Пусть , . Тогда поскольку а1 , b1 , a2 и b2 – действительные числа, для которых умножение коммутативно, получаем:

Кроме того, в множестве комплексных чисел есть «особые» элементы

0 = 0 + 0i и 1= l + 0i ,

которые обладают такими же свойствами, что и на множестве действительных чисел, а именно, для любого комплексного числа z = а + bi имеют место равенства:

8. Произведение двух комплексных чисел равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю.

Доказательство. Пусть , и . Тогда по определению равенства и произведения двух комплексных чисел получаем систему уравнений :

Умножив уравнение (1) на а2 , а уравнение (2) на b2 и сложив полученные уравнения, приходим к системе :

Возможны два случая.

Тогда из уравнения (1)* следует, что b1b2 = 0.
a) Если b1 = 0 , а b2 ≠ 0, то z1 = a1 + b1i = 0.
б) Если b2 = 0 , а b1 ≠ 0 то из уравнения (2) следует, что a2b1 = 0 , значит, а2 = 0 , т. е. z2 = a2 + b2i = 0.

в) Если b1 = b2 = 0 , то z1 = 0 .

Тогда из уравнения (2)* следует, что, a22 + b22 = 0 , т. е. а2 = b2 = 0 , значит, z2 = 0.

10. Любому комплексному числу z=а+bi соответствует противоположное комплексное число (–z) такое, что z + (–z) = 0 .

11. Всякому комплексному числу z=а+bi, отличному от нуля, соответствует обратное комплексное число z1 такое, что z z–1 = 1 .

Доказательство. Условие z ≠ 0 равносильно условию а2 + b2 > 0 . Вычислим z–1.

.

Пользуясь понятиями противоположного и обратного комплексного числа, определим операции вычитания и деления комплексных чисел.

Для того чтобы найти разность двух комплексных чисел и , достаточно сложить число z1 с числом, противоположным числу z2 , т. е.

.

Пример. Вычислите z1 – z2 , если z1 = 5 – 2i ,

Для того чтобы разделить комплексное число на комплексное число , не равное нулю, достаточно умножить число z1 на число, обратное числу z2 , т. е.

Пример. Вычислите .

.

Степени мнимой единицы

Вычислим степени мнимой единицы i. Прежде всего, как и для действительных чисел, положим i0 = 1 . Тогда

i2 = –1 (по определению мнимой единицы);

Вообще, если натуральный показатель степени mпри делении на 4 дает в остатке r , т. е. если m = 4n+r , где n натуральное число, то

;

Пример. Вычислите а) i233 ; b) i102; с) i67 ; d) i516.

Решение. а) i233 = i232 + 1 = i ;

Занятие 2. Операция сопряжения и ее свойства.

Модуль комплексного числа.

Извлечение корня квадратного из комплексного числа

Комплексное число называется сопряженным комплексному числу, если

.

Пример. .

Свойства операции сопряжения

2. Для любого действительного числа а справедливо равенство .

3. Для любого действительного числа b справедливо равенство .

Справедливость свойств 1-3 следует непосредственно из определения операции сопряжения.

4. .

Доказательство. Пусть , . Тогда , . Поэтому

.

Доказательство. Пусть , . Тогда

С другой стороны,

.

Полученные одинаковые результаты доказывают справедливость свойства 5 .

Следствие из свойства 5. Для любого натурального числа n справедливо равенство

.

6. .

Справедливость данного равенства следует из равенства и свойства 5: .

7. Сумма и произведение двух комплексно сопряженных чисел являются действительными числами.

.

Модулем комплексного числа z = а + bi называется действительное число вида

.

Непосредственно из свойства 7 следует, что

.

8. Теорема о сопряженном корне.

Если число является корнем уравнения

(1)

с действительными коэффициентами а0, a1 , . . . , аn , то число также является корнем уравнения (1) .

Доказательство. По определению корня имеем :

;

(2)

Применим к обеим частям равенства (2) операцию сопряжения. Из свойств операции сопряжения следует, что

так как все коэффициенты ai — действительные числа (по условию). Кроме того,

; .

.

Последнее равенство означает, что число z = а – bi является корнем уравнения (1) .

Пример. Зная, что корнем уравнения

является число z1 = 2 + i , найти все корни данного уравнения.

Решение. Поскольку все коэффициенты уравнения (3) – действительные числа, то на основании теоремы 8 делаем вывод, что число z2 = 2 – i также является корнем уравнения (3).

Пусть z3 – неизвестный корень уравнения (3), тогда

Разделив обе части последнего равенства на х2 – 4х + 5 , получим

Следовательно, z3 = 3 .

Найдем значение корня квадратного из числа z=а+bi . Пусть

,

где х и у — неизвестные действительные числа. Возводя обе части этого равенства в квадрат, получаем:

.

Последнее уравнение равносильно системе уравнений

Возведем каждое уравнение системы в квадрат и сложим полученные равенства. Решим систему:

Из второго уравнения последней системы находим

,

где в правой части равенства следует иметь в виду арифметический корень, так как сумма х2+у2 неотрицательна. Учитывая, кроме того, что х2 –­­ у2 = а , получаем:

.

Так как , то оба полученные числа положительны. Извлекая из них квадратные корни, получим действительные значения для х и у :

.

Выражения, уравнения и системы уравнений
с комплексными числами

Сегодня на занятии мы отработаем типовые действия с комплексными числами, а также освоим технику решения выражений, уравнений и систем уравнений, которые эти числа содержат. Данный практикум является продолжением урока Комплексные числа для чайников, и поэтому если вы неважно ориентируетесь в теме, то, пожалуйста, пройдите по указанной выше ссылке. Ну а более подготовленным читателям предлагаю сразу же разогреться:

Упростить выражение , если . Представить результат в тригонометрической форме и изобразить его на комплексной плоскости.

Решение: итак, требуется подставить в «страшную» дробь, провести упрощения, и перевести полученное комплексное число в тригонометрическую форму. Плюс чертёж.

Как лучше оформить решение? С «навороченным» алгебраическим выражением выгоднее разбираться поэтапно. Во-первых, меньше рассеивается внимание, и, во-вторых, если таки задание не зачтут, то будет намного проще отыскать ошибку.

1) Сначала упростим числитель. Подставим в него значение , раскроем скобки и поправим причёску:

…Да, такой вот Квазимодо от комплексных чисел получился…

Напоминаю, что в ходе преобразований используются совершенно бесхитростные вещи – правило умножения многочленов и уже ставшее банальным равенство . Главное, быть внимательным и не запутаться в знаках.

2) Теперь на очереди знаменатель. Если , то:

Заметьте, в какой непривычной интерпретации использована формула квадрата суммы . Как вариант, здесь можно выполнить перестановку под формулу . Результаты, естественно, совпадут.

3) И, наконец, всё выражение. Если , то:

Чтобы избавиться от дроби, умножим числитель и знаменатель на сопряженное знаменателю выражение. При этом в целях применения формулы разности квадратов следует предварительно (и уже обязательно!) поставить отрицательную действительную часть на 2-е место:

А сейчас ключевое правило:

НИ В КОЕМ СЛУЧАЕ НЕ ТОРОПИМСЯ! Лучше перестраховаться и прописать лишний шаг.
В выражениях, уравнениях и системах с комплексными числами самонадеянные устные вычисления чреваты, как никогда!

На завершающем шаге произошло хорошее сокращение и это просто отличный признак.

Примечание: строго говоря, здесь произошло деление комплексного числа на комплексное число 50 (вспоминаем, что ). Об этом нюансе я умалчивал до сих пор и о нём мы ещё поговорим чуть позже.

Обозначим наше достижение буквой

Представим полученный результат в тригонометрической форме. Вообще говоря, здесь можно обойтись без чертежа, но коль скоро, требуется – несколько рациональнее выполнить его прямо сейчас:

Вычислим модуль комплексного числа:

Если выполнять чертёж в масштабе 1 ед. = 1 см (2 тетрадные клетки), то полученное значение легко проверить с помощью обычной линейки.

Найдём аргумент. Так как число расположено во 2-й координатной четверти , то:

Угол элементарно проверяется транспортиром. Вот в чём состоит несомненный плюс чертежа.

Таким образом: – искомое число в тригонометрической форме.

Выполним проверку:
, в чём и требовалось убедиться.

Незнакомые значения синуса и косинуса удобно находить по тригонометрической таблице.

Ответ:

Аналогичный пример для самостоятельного решения:

Упростить выражение , где . Изобразить полученное число на комплексной плоскости и записать его в показательной форме.

Постарайтесь не пропускать учебные примеры. Кажутся-то они, может быть, и простыми, но без тренировки «сесть в лужу» не просто легко, а очень легко. Поэтому «набиваем руку».

Краткое решение и ответ в конце урока.

Нередко задача допускает не единственный путь решения:

Решение: прежде всего, обратим внимание на оригинальное условие – одно число представлено в алгебраической, а другое – в тригонометрической форме, да ещё и с градусами. Давайте сразу перепишем его в более привычном виде: .

В какой форме проводить вычисления? Выражение , очевидно, предполагает первоочередное умножение и дальнейшее возведение в 10-ю степень по формуле Муавра, которая сформулирована для тригонометрической формы комплексного числа. Таким образом, представляется более логичным преобразовать первое число. Найдём его модуль и аргумент:

Используем правило умножения комплексных чисел в тригонометрической форме:
если , то

Далее применяем формулу Муавра , которая является следствием указанного выше правила:

Делая дробь правильной, приходим к выводу, что можно «скрутить» 4 оборота ( рад.):

Второй способ решения состоит в том, чтобы перевести 2-е число в алгебраическую форму , выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и воспользоваться формулой Муавра.

Как видите, одно «лишнее» действие. Желающие могут довести решение до конца и убедиться, что результаты совпадают.

В условии ничего не сказано о форме итогового комплексного числа, поэтому:

Ответ:

Но «для красоты» либо по требованию результат нетрудно представить и в алгебраической форме:

Здесь нужно вспомнить действия со степенями, хотя одного полезного правила в методичке нет, вот оно: .

И ещё одно важное замечание: пример можно решить в двух стилях. Первый вариант – работать с двумя числами и мириться с дробями. Второй вариант – представить каждое число в виде частного двух чисел: и избавиться от четырёхэтажности. С формальной точки зрения без разницы, как решать, но содержательное отличие есть! Пожалуйста, хорошо осмыслите:
– это комплексное число;
– это частное двух комплексных чисел ( и ), однако в зависимости от контекста можно сказать и так: число , представленное в виде частного двух комплексных чисел.

Краткое решение и ответ в конце урока.

Выражения – хорошо, а уравнения – лучше:

Уравнения с комплексными коэффициентами

Чем они отличаются от «обычных» уравнений? Коэффициентами =)

В свете вышеприведённого замечания начнём с этого примера:

И незамедлительная преамбула по «горячим следам»: изначально правая часть уравнения позиционируется, как частное двух комплексных чисел ( и 13), и поэтому будет нехорошим тоном переписать условие с числом (хотя это и не повлечёт ошибки). Более явственно данное различие, кстати, просматривается в дроби – если, условно говоря, , то это значение в первую очередь понимается как «полноценный» комплексный корень уравнения, а не как делитель числа , и тем более – не как часть числа !

Решение, в принципе, тоже можно оформить пошагово, но в данном случае овчинка выделки не стОит. Первоначальная задача состоит в том, чтобы упростить всё, что не содержит неизвестной «зет», в результате чего уравнение сведётся к виду :

Уверенно упрощаем среднюю дробь:

Результат переносим в правую часть и находим разность:

Примечание: и вновь обращаю ваше внимание на содержательный момент – здесь мы не вычли из числа число, а подвели дроби к общему знаменателю! Следует отметить, что уже в ХОДЕ решения не возбраняется работать и с числами: , правда, в рассматриваемом примере такой стиль скорее вреден, чем полезен =)

По правилу пропорции выражаем «зет»:

Теперь можно снова разделить и умножить на сопряжённое выражение, но подозрительно похожие числа числителя и знаменателя подсказывают следующий ход:

Ответ:

В целях проверки подставим полученное значение в левую часть исходного уравнения и проведём упрощения:

– получена правая часть исходного уравнения, таким образом, корень найден верно.

…Сейчас-сейчас… подберу для вас что-нибудь поинтереснее… держите:

Данное уравнение сводится к виду , а значит, является линейным. Намёк, думаю, понятен – дерзайте!

Конечно же… как можно без него прожить:

Квадратное уравнение с комплексными коэффициентами

На уроке Комплексные числа для чайников мы узнали, что квадратное уравнение с действительными коэффициентами может иметь сопряжённые комплексные корни, после чего возникает закономерный вопрос: а почему, собственно, сами коэффициенты не могут быть комплексными? Сформулирую общий случай:

Квадратное уравнение с произвольными комплексными коэффициентами (1 или 2 из которых либо все три могут быть, в частности, и действительными) имеет два и только два комплексных корня (возможно один из которых либо оба действительны). При этом корни (как действительные, так и с ненулевой мнимой частью) могут совпадать (быть кратными).

Квадратное уравнение с комплексными коэффициентами решается по такой же схеме, что и «школьное» уравнение, с некоторыми отличиями в технике вычислений:

Найти корни квадратного уравнения

Решение: на первом месте расположена мнимая единица, и, в принципе, от неё можно избавиться (умножая обе части на ), однако, в этом нет особой надобности.

Для удобства выпишем коэффициенты:

Не теряем «минус» у свободного члена! …Может быть не всем понятно – перепишу уравнение в стандартном виде :

А вот и главное препятствие:

Применение общей формулы извлечения корня (см. последний параграф статьи Комплексные числа для чайников) осложняется серьёзными затруднениями, связанными с аргументом подкоренного комплексного числа (убедитесь сами). Но существует и другой, «алгебраический» путь! Корень будем искать в виде:

Возведём обе части в квадрат:

Два комплексных числа равны, если равны их действительные и их мнимые части. Таким образом, получаем следующую систему:

Систему проще решить подбором (более основательный путь – выразить из 2-го уравнения – подставить в 1-е, получить и решить биквадратное уравнение). Предполагая, что автор задачи не изверг, выдвигаем гипотезу, что и – целые числа. Из 1-го уравнения следуют, что «икс» по модулю больше, чем «игрек». Кроме того, положительное произведение сообщает нам, что неизвестные одного знака. Исходя из вышесказанного, и ориентируясь на 2-е уравнение, запишем все подходящие ему пары:

Очевидно, что 1-му уравнению системы удовлетворяют две последние пары, таким образом:

Не помешает промежуточная проверка:

что и требовалось проверить.

В качестве «рабочего» корня можно выбрать любое значение. Понятно, что лучше взять версию без «минусов»:

Находим корни, не забывая, кстати, что :

Ответ:

Проверим, удовлетворяют ли найденные корни уравнению :

Таким образом, решение найдено правильно.

По мотивам только что разобранной задачи:

Найти корни уравнения

Следует отметить, что квадратный корень из чисто комплексного числа прекрасно извлекается и с помощью общей формулы , где , поэтому в образце приведены оба способа. Второе полезное замечание касается того, что предварительное извлечение корня из константы ничуть не упрощает решение.

А теперь можно расслабиться – в этом примере вы отделаетесь лёгким испугом 🙂

Решить уравнение и выполнить проверку

Решения и ответы в конце урока.

Заключительный параграф статьи посвящён

системе уравнений с комплексными числами

Расслабились и… не напрягаемся =) Рассмотрим простейший случай – систему двух линейных уравнений с двумя неизвестными:

Решить систему уравнений. Ответ представить в алгебраической и показательной формах, изобразить корни на чертеже.

Решение: уже само условие подсказывает, что система имеет единственное решение, то есть, нам нужно найти два числа , которые удовлетворяют каждому уравнению системы.

Систему реально решить «детским» способом (выразить одну переменную через другую), однако гораздо удобнее использовать формулы Крамера. Вычислим главный определитель системы:

, значит, система имеет единственное решение.

Повторюсь, что лучше не торопиться и прописывать шаги максимально подробно:

Домножаем числитель и знаменатель на мнимую единицу и получаем 1-й корень:

Перед тем, как продолжать дальше, целесообразно проверить решение. Подставим найденные значения в левую часть каждого уравнения системы:

Получены соответствующие правые части, ч.т.п.

Представим корни в показательной форме. Для этого нужно найти их модули и аргументы:

1) – арктангенс «двойки» вычисляется «плохо», поэтому так и оставляем:

Ответ:

Решить систему уравнений

Найти произведение корней и представить его в тригонометрической форме.

Краткое решение совсем близко.

И в заключение ответим на экзистенциальный вопрос: для чего нужны комплексные числа? Комплексные числа нужны для расширения сознания выполнения заданий других разделов высшей математики, кроме того, они используются во вполне материальных инженерно-технических расчетах на практике.

На этом курс Опытного пользователя комплексных чисел завершён – сертификат вам на стену и новых достижений!

Решения и ответы:

Пример 2: Решение: если , то:

Умножим числитель и знаменатель на сопряжённое знаменателю выражение:

Изобразим полученное число на чертеже:

Представим ответ в показательной форме. Найдем модуль и аргумент данного числа:

Поскольку число расположено в 3-й четверти, то:

Таким образом:
Ответ:

Пример 4: Решение:

Пример 6: Решение:

Умножим обе части уравнения на :

Ответ:

Пример 8: Решение:
Первый способ: корни уравнения ищем в виде:

Возведём обе части в квадрат:

Комплексные числа равны, если равны их действительные и их мнимые части:

Из 1-го уравнения следует, что:
1) , но это не удовлетворяет 2-му уравнению (равенство выполняется только в том случае, если и одного знака);
2) – подставим во 2-е уравнение:

Таким образом: либо
Ответ:

Второй способ: используем формулу . В данном случае :

Найдём модуль и аргумент комплексного числа:
;
очевидно, что .
Таким образом:

Ответ:

Пример 9: Решение: . Вычислим дискриминант:

Таким образом:

Ответ:

Проверка: подставим в исходное уравнение :

верное равенство;

верное равенство.
Что и требовалось проверить.

Пример 11: Решение: систему решим методом Крамера:

Таким образом, система имеет единственное решение.
Найдём произведение корней:

Представим результат в тригонометрической форме:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Выражения, уравнения и системы уравнений
с комплексными числами

Сегодня на занятии мы отработаем типовые действия с комплексными числами, а также освоим технику решения выражений, уравнений и систем уравнений, которые эти числа содержат. Данный практикум является продолжением урока Комплексные числа для чайников, и поэтому если вы неважно ориентируетесь в теме, то, пожалуйста, пройдите по указанной выше ссылке. Ну а более подготовленным читателям предлагаю сразу же разогреться:

Упростить выражение , если . Представить результат в тригонометрической форме и изобразить его на комплексной плоскости.

Решение: итак, требуется подставить в «страшную» дробь, провести упрощения, и перевести полученное комплексное число в тригонометрическую форму. Плюс чертёж.

Как лучше оформить решение? С «навороченным» алгебраическим выражением выгоднее разбираться поэтапно. Во-первых, меньше рассеивается внимание, и, во-вторых, если таки задание не зачтут, то будет намного проще отыскать ошибку.

1) Сначала упростим числитель. Подставим в него значение , раскроем скобки и поправим причёску:

…Да, такой вот Квазимодо от комплексных чисел получился…

Напоминаю, что в ходе преобразований используются совершенно бесхитростные вещи – правило умножения многочленов и уже ставшее банальным равенство . Главное, быть внимательным и не запутаться в знаках.

2) Теперь на очереди знаменатель. Если , то:

Заметьте, в какой непривычной интерпретации использована формула квадрата суммы . Как вариант, здесь можно выполнить перестановку под формулу . Результаты, естественно, совпадут.

3) И, наконец, всё выражение. Если , то:

Чтобы избавиться от дроби, умножим числитель и знаменатель на сопряженное знаменателю выражение. При этом в целях применения формулы разности квадратов следует предварительно (и уже обязательно!) поставить отрицательную действительную часть на 2-е место:

А сейчас ключевое правило:

НИ В КОЕМ СЛУЧАЕ НЕ ТОРОПИМСЯ! Лучше перестраховаться и прописать лишний шаг.
В выражениях, уравнениях и системах с комплексными числами самонадеянные устные вычисления чреваты, как никогда!

На завершающем шаге произошло хорошее сокращение и это просто отличный признак.

Примечание: строго говоря, здесь произошло деление комплексного числа на комплексное число 50 (вспоминаем, что ). Об этом нюансе я умалчивал до сих пор и о нём мы ещё поговорим чуть позже.

Обозначим наше достижение буквой

Представим полученный результат в тригонометрической форме. Вообще говоря, здесь можно обойтись без чертежа, но коль скоро, требуется – несколько рациональнее выполнить его прямо сейчас:

Вычислим модуль комплексного числа:

Если выполнять чертёж в масштабе 1 ед. = 1 см (2 тетрадные клетки), то полученное значение легко проверить с помощью обычной линейки.

Найдём аргумент. Так как число расположено во 2-й координатной четверти , то:

Угол элементарно проверяется транспортиром. Вот в чём состоит несомненный плюс чертежа.

Таким образом: – искомое число в тригонометрической форме.

Выполним проверку:
, в чём и требовалось убедиться.

Незнакомые значения синуса и косинуса удобно находить по тригонометрической таблице.

Ответ:

Аналогичный пример для самостоятельного решения:

Упростить выражение , где . Изобразить полученное число на комплексной плоскости и записать его в показательной форме.

Постарайтесь не пропускать учебные примеры. Кажутся-то они, может быть, и простыми, но без тренировки «сесть в лужу» не просто легко, а очень легко. Поэтому «набиваем руку».

Краткое решение и ответ в конце урока.

Нередко задача допускает не единственный путь решения:

Решение: прежде всего, обратим внимание на оригинальное условие – одно число представлено в алгебраической, а другое – в тригонометрической форме, да ещё и с градусами. Давайте сразу перепишем его в более привычном виде: .

В какой форме проводить вычисления? Выражение , очевидно, предполагает первоочередное умножение и дальнейшее возведение в 10-ю степень по формуле Муавра, которая сформулирована для тригонометрической формы комплексного числа. Таким образом, представляется более логичным преобразовать первое число. Найдём его модуль и аргумент:

Используем правило умножения комплексных чисел в тригонометрической форме:
если , то

Далее применяем формулу Муавра , которая является следствием указанного выше правила:

Делая дробь правильной, приходим к выводу, что можно «скрутить» 4 оборота ( рад.):

Второй способ решения состоит в том, чтобы перевести 2-е число в алгебраическую форму , выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и воспользоваться формулой Муавра.

Как видите, одно «лишнее» действие. Желающие могут довести решение до конца и убедиться, что результаты совпадают.

В условии ничего не сказано о форме итогового комплексного числа, поэтому:

Ответ:

Но «для красоты» либо по требованию результат нетрудно представить и в алгебраической форме:

Здесь нужно вспомнить действия со степенями, хотя одного полезного правила в методичке нет, вот оно: .

И ещё одно важное замечание: пример можно решить в двух стилях. Первый вариант – работать с двумя числами и мириться с дробями. Второй вариант – представить каждое число в виде частного двух чисел: и избавиться от четырёхэтажности. С формальной точки зрения без разницы, как решать, но содержательное отличие есть! Пожалуйста, хорошо осмыслите:
– это комплексное число;
– это частное двух комплексных чисел ( и ), однако в зависимости от контекста можно сказать и так: число , представленное в виде частного двух комплексных чисел.

Краткое решение и ответ в конце урока.

Выражения – хорошо, а уравнения – лучше:

Уравнения с комплексными коэффициентами

Чем они отличаются от «обычных» уравнений? Коэффициентами =)

В свете вышеприведённого замечания начнём с этого примера:

И незамедлительная преамбула по «горячим следам»: изначально правая часть уравнения позиционируется, как частное двух комплексных чисел ( и 13), и поэтому будет нехорошим тоном переписать условие с числом (хотя это и не повлечёт ошибки). Более явственно данное различие, кстати, просматривается в дроби – если, условно говоря, , то это значение в первую очередь понимается как «полноценный» комплексный корень уравнения, а не как делитель числа , и тем более – не как часть числа !

Решение, в принципе, тоже можно оформить пошагово, но в данном случае овчинка выделки не стОит. Первоначальная задача состоит в том, чтобы упростить всё, что не содержит неизвестной «зет», в результате чего уравнение сведётся к виду :

Уверенно упрощаем среднюю дробь:

Результат переносим в правую часть и находим разность:

Примечание: и вновь обращаю ваше внимание на содержательный момент – здесь мы не вычли из числа число, а подвели дроби к общему знаменателю! Следует отметить, что уже в ХОДЕ решения не возбраняется работать и с числами: , правда, в рассматриваемом примере такой стиль скорее вреден, чем полезен =)

По правилу пропорции выражаем «зет»:

Теперь можно снова разделить и умножить на сопряжённое выражение, но подозрительно похожие числа числителя и знаменателя подсказывают следующий ход:

Ответ:

В целях проверки подставим полученное значение в левую часть исходного уравнения и проведём упрощения:

– получена правая часть исходного уравнения, таким образом, корень найден верно.

…Сейчас-сейчас… подберу для вас что-нибудь поинтереснее… держите:

Данное уравнение сводится к виду , а значит, является линейным. Намёк, думаю, понятен – дерзайте!

Конечно же… как можно без него прожить:

Квадратное уравнение с комплексными коэффициентами

На уроке Комплексные числа для чайников мы узнали, что квадратное уравнение с действительными коэффициентами может иметь сопряжённые комплексные корни, после чего возникает закономерный вопрос: а почему, собственно, сами коэффициенты не могут быть комплексными? Сформулирую общий случай:

Квадратное уравнение с произвольными комплексными коэффициентами (1 или 2 из которых либо все три могут быть, в частности, и действительными) имеет два и только два комплексных корня (возможно один из которых либо оба действительны). При этом корни (как действительные, так и с ненулевой мнимой частью) могут совпадать (быть кратными).

Квадратное уравнение с комплексными коэффициентами решается по такой же схеме, что и «школьное» уравнение, с некоторыми отличиями в технике вычислений:

Найти корни квадратного уравнения

Решение: на первом месте расположена мнимая единица, и, в принципе, от неё можно избавиться (умножая обе части на ), однако, в этом нет особой надобности.

Для удобства выпишем коэффициенты:

Не теряем «минус» у свободного члена! …Может быть не всем понятно – перепишу уравнение в стандартном виде :

А вот и главное препятствие:

Применение общей формулы извлечения корня (см. последний параграф статьи Комплексные числа для чайников) осложняется серьёзными затруднениями, связанными с аргументом подкоренного комплексного числа (убедитесь сами). Но существует и другой, «алгебраический» путь! Корень будем искать в виде:

Возведём обе части в квадрат:

Два комплексных числа равны, если равны их действительные и их мнимые части. Таким образом, получаем следующую систему:

Систему проще решить подбором (более основательный путь – выразить из 2-го уравнения – подставить в 1-е, получить и решить биквадратное уравнение). Предполагая, что автор задачи не изверг, выдвигаем гипотезу, что и – целые числа. Из 1-го уравнения следуют, что «икс» по модулю больше, чем «игрек». Кроме того, положительное произведение сообщает нам, что неизвестные одного знака. Исходя из вышесказанного, и ориентируясь на 2-е уравнение, запишем все подходящие ему пары:

Очевидно, что 1-му уравнению системы удовлетворяют две последние пары, таким образом:

Не помешает промежуточная проверка:

что и требовалось проверить.

В качестве «рабочего» корня можно выбрать любое значение. Понятно, что лучше взять версию без «минусов»:

Находим корни, не забывая, кстати, что :

Ответ:

Проверим, удовлетворяют ли найденные корни уравнению :

Таким образом, решение найдено правильно.

По мотивам только что разобранной задачи:

Найти корни уравнения

Следует отметить, что квадратный корень из чисто комплексного числа прекрасно извлекается и с помощью общей формулы , где , поэтому в образце приведены оба способа. Второе полезное замечание касается того, что предварительное извлечение корня из константы ничуть не упрощает решение.

А теперь можно расслабиться – в этом примере вы отделаетесь лёгким испугом 🙂

Решить уравнение и выполнить проверку

Решения и ответы в конце урока.

Заключительный параграф статьи посвящён

системе уравнений с комплексными числами

Расслабились и… не напрягаемся =) Рассмотрим простейший случай – систему двух линейных уравнений с двумя неизвестными:

Решить систему уравнений. Ответ представить в алгебраической и показательной формах, изобразить корни на чертеже.

Решение: уже само условие подсказывает, что система имеет единственное решение, то есть, нам нужно найти два числа , которые удовлетворяют каждому уравнению системы.

Систему реально решить «детским» способом (выразить одну переменную через другую), однако гораздо удобнее использовать формулы Крамера. Вычислим главный определитель системы:

, значит, система имеет единственное решение.

Повторюсь, что лучше не торопиться и прописывать шаги максимально подробно:

Домножаем числитель и знаменатель на мнимую единицу и получаем 1-й корень:

Перед тем, как продолжать дальше, целесообразно проверить решение. Подставим найденные значения в левую часть каждого уравнения системы:

Получены соответствующие правые части, ч.т.п.

Представим корни в показательной форме. Для этого нужно найти их модули и аргументы:

1) – арктангенс «двойки» вычисляется «плохо», поэтому так и оставляем:

Ответ:

Решить систему уравнений

Найти произведение корней и представить его в тригонометрической форме.

Краткое решение совсем близко.

И в заключение ответим на экзистенциальный вопрос: для чего нужны комплексные числа? Комплексные числа нужны для расширения сознания выполнения заданий других разделов высшей математики, кроме того, они используются во вполне материальных инженерно-технических расчетах на практике.

На этом курс Опытного пользователя комплексных чисел завершён – сертификат вам на стену и новых достижений!

Решения и ответы:

Пример 2: Решение: если , то:

Умножим числитель и знаменатель на сопряжённое знаменателю выражение:

Изобразим полученное число на чертеже:

Представим ответ в показательной форме. Найдем модуль и аргумент данного числа:

Поскольку число расположено в 3-й четверти, то:

Таким образом:
Ответ:

Пример 4: Решение:

Пример 6: Решение:

Умножим обе части уравнения на :

Ответ:

Пример 8: Решение:
Первый способ: корни уравнения ищем в виде:

Возведём обе части в квадрат:

Комплексные числа равны, если равны их действительные и их мнимые части:

Из 1-го уравнения следует, что:
1) , но это не удовлетворяет 2-му уравнению (равенство выполняется только в том случае, если и одного знака);
2) – подставим во 2-е уравнение:

Таким образом: либо
Ответ:

Второй способ: используем формулу . В данном случае :

Найдём модуль и аргумент комплексного числа:
;
очевидно, что .
Таким образом:

Ответ:

Пример 9: Решение: . Вычислим дискриминант:

Таким образом:

Ответ:

Проверка: подставим в исходное уравнение :

верное равенство;

верное равенство.
Что и требовалось проверить.

Пример 11: Решение: систему решим методом Крамера:

Таким образом, система имеет единственное решение.
Найдём произведение корней:

Представим результат в тригонометрической форме:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


источники:

http://mathprofi.net/vyrazhenija_uravnenija_i_sistemy_s_%20kompleksnymi_chislami.html

http://mathprofi.net/vyrazhenija_uravnenija_i_sistemy_s_%20kompleksnymi_chislami.html