Конспект по теме равносильные уравнения

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №19. Равносильные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие равносильного уравнения;

2) понятие равносильного неравенства;

3) понятие уравнения-следствия;

4) основные теоремы равносильности.

Глоссарий по теме

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

1) Уравнения равносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения также равносильны, т.к. у них одни и те же корни .

3) А вот уравнения не равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Реализация этого плана связана с поисками ответов на четыре вопроса.

  • Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
  • Какие преобразования могут перевести данное уравнение в уравнение-следствие?
  • Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
  • В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

  1. если ва уравнения равносильны, то каждое из них является следствием другого;
  2. если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение (где а > 0, a≠1)

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение равносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

5. f(x) = g(x) ⇔ , где f(x)≥0, g(x)≥0

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля

Решим уравнение:

Возведем в квадрат обе части уравнения, получим:

, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня , а у первоначального уравнения только один корень х=4.

  1. Неравенства и x-3 x-1 не равносильны, так как решениями первого являются числа x 1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

«Равносильность уравнений» в 11 классе
план-конспект урока по алгебре (11 класс) по теме

Урок по алгебре и началам анализа в 11 классе по теме » Равносильность уравнений»..

Скачать:

ВложениеРазмер
План-конспект урока по алгебре и началам анализа в 11 классе по теме: «Равносильность уравнений»628 КБ

Предварительный просмотр:

Урок по алгебре и началам анализа в 11 классе

Тема: «Равносильность уравнений»

Тип уроков: комбинированные уроки изучения нового материала, обобщения и систематизации знаний.

  • обобщить и систематизировать знания учащихся по наиболее важным вопросам, связанным с преобразованиями и решением уравнений с одной переменной.
  • развитие мышления учащихся; развитие познавательного интереса и умений учебно-познавательной деятельности.
  • воспитание организованности, самоконтроля и взаимоконтроля.

Организационные формы общения: индивидуальная, групповая.

Оборудование: модуль «Решение иррациональных уравнений».

I Организационный этап — 2 мин.

II Актуализация опорных знаний — 4 мин.

III Цели урока — 2 мин.

IV Изучение теоретического материала и способов деятельности — 20 мин.

V Закрепление учебного материала — 12 мин.

V Закрепление учебного материала — 25 мин.

VI Самостоятельная работа — 10 мин.

VII Домашнее задание — 3 мин.

VIII Выводы по уроку — 2 мин.

I Организационный этап

II Актуализация опорных знаний

Краткое обсуждение с учащимися тех теоретических знаний, которыми они обладают и пользуются при решении уравнений.

Допустим, нам необходимо решить уравнение

Преобразуем данное уравнение, выстраивая цепочку уравнений и стараясь получить уравнение вида а х = b , т.е. линейное уравнение

6х — 15 = 2х + 5, 6х — 2х = 5 + 15, 4х = 20.

Откуда получаем, что 5 — корень уравнения. Причём, как последнего уравнения, так и любого из уравнений данной цепочки, так как они являются равносильными уравнениями. По сути, решением уравнения и является выстраивание подобных цепочек уравнений.

Однако при преобразовании уравнений (и неравенств в том числе) далеко не всегда легко получить им равносильные уравнения. И как быть тогда?

Изучением этих крайне важных вопросов нам и предстоит заняться.

Мы вернёмся к целому ряду понятий, связанных с решением уравнений, с которыми вы неплохо знакомы, и посмотрим на них как бы несколько иначе, глубже, обобщим и дополним рядом важных и принципиальных положений.

IV Изучение теоретического материала и способов деятельности

1) Определение. Два уравнения с одной переменной f(х) = g(х) и h(х) = р(х) называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Например, уравнения — 4 = 0 и ( х + 2)(2 Х — 4 ) = 0 равносильны; равносильны и уравнения х 2 + 1 = 0 и = — 2 — они не имеют корней.

2) Определение . Если каждый корень уравнения f(х) = g(х) (1)

является в то же время корнем уравнения h(х) = р(х) (2),

то уравнение (2) называется следствием уравнения (1).

Например, уравнение х — 2 = 3 имеет корень 5 , уравнение — 25 = 0 имеет корни ± 5 . Так как корень уравнения х — 2 = 3 является корнем уравнения х 2 — 25 = 0 , то уравнение х 2 — 25 = 0 является следствием,, уравнения х — 2 = 3.

Следовательно, два уравнения называют равносильными тогда и только тогда, когда каждое из них является следствием другого.

3) Если в ходе преобразований, при переходе от одного из уравнений к уравнению-следствию, мы неуверенны в равносильности выполняемого перехода, то у последнего уравнения могут появиться посторонние корни в отношении исходного уравнения. Поэтому все полученные корни уравнения- следствия необходимо проверить, подставляя их в исходное уравнение. Тем самым, проверка найденных корней уравнения является не проверкой верности выполненных технических преобразований, а неотъемлемой частью, этапом решения уравнения.

4) Итак, мы выяснили, что в процессе решения уравнений (а ещё более при решении неравенств) на каждом этапе преобразований крайне важно знать, равносильный ли переход мы совершаем. Сформулируем и обсудим ряд важных для нас положений.

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному уравнению.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечётную степень, то получится уравнение, равносильное данному уравнению.

Теорема 3 . Показательное уравнение (где > 1, 1 ) равносильно уравнению f(х) = g(х).

Определение . Областью определения уравнения f(х) = g(х) или ОДЗ переменной уравнения называется множество тех значений х , при которых одновременно имеют смысл обе части уравнения f(х) = g(х).

Теорема 4 . Если обе части уравнения f(х) = g(х) умножить на одно и то же выражение h(х), которое имеет смысл всюду в области определения (ОДЗ) уравнения f(х) = g(х) и при этом нигде в этой области h(х) 0 , то уравнения f(х) = g(х) и h(х)∙ f(х) = h(х) g(х) равносильны.

То есть, мы можем обе части уравнения умножать или делить на одно и то же отличное от нуля число, не нарушая при этом равносильности уравнений.

Теорема 5. Если обе части уравнения f(х) = g(х) неотрицательны на ОДЗ уравнения, то после возведения обеих его частей в одну и ту же степень n получится уравнение g n (x), равносильное исходному уравнению.

Теорема 6. Если f(х)>0, = g(х)>0 , то уравнение log α 2 f(x) = log α g(x) , где а>0, , равносильно уравнению f(х) = g(х).

5) Рассмотрим применение теоретических положений на практике. Пусть нам дано уравнение х — 1 = 3 , корень которого равен 4 .

а) Умножив обе части уравнения на выражение х — 2 , получим уравнение (х — 1 )(х — 2) = 3(х — 2). Решим полученное уравнение

х 2 — Зх + 2 = Зх — 6, х 2 — 6х + 8 = 0, x 1 = 2, х 2 = 4.

То есть, уравнение-следствие имеет два корня 2 и 4 , причём, 2 -посторонний корень для исходного уравнения. Каким образом у исходного уравнения появился посторонний корень? — Если бы мы вначале преобразовали исходное уравнение к виду х — 4 = 0 . За тем домножили обе части уравнения на х — 2 . То получили бы уравнение (х — 4)(х — 2) = 0 , которое равносильно совокупности уравнении . Тогда понятно, что уравнение х — 2 = 0 , по отношению к исходному уравнению х — 4 = 0 , является посторонним уравнением, отсюда и появление постороннего корня. Фактически мы умножили обе части исходного уравнения на выражение х — 2 , допуская при этом его равенство нулю, что невозможно по теореме 4 .

б) Возведём в квадрат обе части уравнения х — 1 = 3 . Получим уравнение-следствие (х-1) 2 = 9 . Откуда х 2 — 2х — 8 = 0, х 1 = — 2, х 2 = 4 . Вновь у уравнения-следствия появляется посторонний корень по отношению к исходному уравнению. Преобразовав уравнение (х-1) 2 = 9 к виду (х-4)(х+ 2)=0 , получаем постороннее уравнение х + 2 = 0 и посторонний корень -2 . Нарушено условие теоремы 5: возводя в квадрат, мы «забыли», что при возведении в квадрат должно выполняться условие х — 1 >0 .

в) Рассмотрим уравнение ln (2х — 4) = 1n(3х — 5). Потенцируя, получим уравнение 2х — 4 = Зх — 5. Откуда х = 1 . Проверкой убеждаемся, что 1 является посторонним корнем для исходного уравнения. В данном случае произошло не появление постороннего уравнения, а расширение ОДЗ исходного уравнения. У исходного уравнения ОДЗ: (2; + ), у полученного уравнения ОДЗ — вся числовая прямая. Тем самым не нарушены требования теоремы 6.

6) Выводы. Исходное уравнение преобразуется в процессе решения в уравнение-следствие, значит, необходимо обязательное выполнение проверки всех найденных корней, если: расширилась ОДЗ уравнения; возводились в одну и ту же чётную степень обе части уравнения; выполнялось умножение обеих частей уравнения на одно и тоже выражение с переменной.

V Закрепление учебного материала

1) № 1663; № 1665(а, в); № 1666 (а, б).

2) Переходя к решению уравнений, мы будем стараться учесть следующие два момента. С одной стороны наши решения уравнений должны содержать необходимое теоретическое обоснование нашей деятельности. С другой стороны мы будем учитывать, что в дальнейшем, при решении неравенств, в большинстве случаев от нас потребуется обеспечение равносильности переходов в преобразованиях, и поэтому уже на данном этапе — при решении уравнений, мы будем отрабатывать именно эти навыки, дабы обеспечить преемственность способов деятельности.

Пусть на дано уравнение g(x) Возведя в квадрат обе части уравнения, получим уравнение f(х) = g 2 (х) которое можно записать так:

( -g(x)) ( +g(x))=0

Откуда получаем совокупность уравнений: .

Имеем постороннее уравнение, и могут появиться посторонние корни. Следовательно, необходима проверка корней. Если мы захотим выполнить равносильный переход и обойтись без проверки, то исходное уравнение

равносильно смешанной системе:

3) Решим уравнения (двумя способами):

а) Первый способ. Решение. ОДЗ уравнения: х > — 11 . После возведения обеих частей уравнения в квадрат, получим уравнение-следствие х 2 -Зх-10 = 0 с корнями — 2 и 5 . Оба корня принадлежат ОДЗ уравнения, но это не меняет сути дела и мы вынуждены выполнить проверку корней.

Проверка. Подставив x 1 = — 2 , получим — неверное равенство, — 2 — посторонний корень.

Подставив х 2 = 5 , получим или 4 = 4 — верное равенство, 5 корень исходного уравнения.

а) Второй способ . Решение. Исходное уравнение равносильно системе

или решение системы и исходного

уравнения х 2 = 5.

б) Первый способ . Решение. ОДЗ уравнения: . Возведя обе части

уравнения в квадрат и приведя подобные слагаемые, получим уравнение х 2 — х = 0 . Откуда x 1 = 0, х 2 = 1 . Опять оба корня принадлежат ОДЗ уравнения, но будут ли они корнями исходного уравнения ничего сказать нельзя.

Проверка . Подставив x 1 = 0 , получим — верное равенство, 0 — корень исходного уравнения.

Подставив х 2 = 1 , получим — верное равенство, 1 — корень исходного уравнения.

б) Второй способ. Решение. Исходное уравнение равносильно системе

или . Откуда решение системы и исходного уравнения 0 и 1 .

в) Первый способ. Решение. ОДЗ уравнения: -1 . Возведя обе части уравнения в квадрат и приведя подобные слагаемые, получим уравнение . Откуда x 1 = 0, х 2 = . Оба корня принадлежат ОДЗ

уравнения. Выполним проверку.

Проверка . Подставив x 1 = 0 , получим — неверное равенство, 0 -посторонний корень.

Подставив х 2 = , получим — неверное равенство, -посторонний корень.

Оба корня принадлежат ОДЗ переменной уравнения, но при этом являются посторонними корнями. Ответ: корней нет.

в) Второй способ . Решение. Исходное уравнение равносильно системе или . Система решений не имеет, значит, и уравнение тоже решений не имеет.

Ответ: корней нет.

г) Первый способ . Решение. ОДЗ уравнения задаётся решением системы , или которая решений не имеет. Значит, ОДЗ уравнения — пустое множество, уравнение решений не имеет.

Ответ: корней нет.

г) Второй способ . Решение. Исходное уравнение равносильно системе или Система решений не имеет, значит, и исходное уравнение тоже решений не имеет.

Ответ: корней нет .

Решение. Произведение двух сомножителей равно нулю, если хотя бы один из сомножителей равен нулю, а второй сомножитель при этом имеет смысл.

а) х 2 — 9 = 0, х = ± 3.

Проверим, имеет ли смысл при этих значениях второй сомножитель.

При x 1 =-3, — имеет смысл, поэтому — 3 — корень уравнения; при х 2 = 3, — не имеет смысла, 3 не является корнем уравнения.

Уравнение равносильно системе или

Решением системы является число 1 . Так как х 2 — 9 имеет смысл при всех значениях переменной, то 1 является и корнем исходного уравнения.

5) Выводы. При решении иррациональных уравнений — возведении обеих частей уравнения в чётную степень, принадлежность полученных корней ОДЗ уравнения не позволяет сделать вывод, о том являются ли эти корни посторонними или нет. Поэтому выполнение проверки корней обязательно и это этап решения уравнения. Если корень не принадлежит ОДЗ то он, конечно, посторонний корень уравнения. В то же время, записывая систему равносильную уравнению, мы не нарушаем логики решения уравнения: ведь уравнение с пустой ОДЗ равносильно системе, не имеющей решений.

VI Самостоятельная работа

Решить уравнение двумя способами.

I вариант II вариант

VII Домашнее задание

§ 55 по учебнику; № 1673 по задачнику (решить двумя способами).

Конспект лекции для 10-11 классов по теме «Равносильность уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Определение 1: Два уравнения с одной переменной f ( x )= g ( x ) и p ( x )= h ( x )

называются равносильными , если множества их корней совпадают.

Определение 2: Если каждый корень уравнения f ( x )= g ( x ) (1)

является в тоже время корнем уравнения p ( x )= h ( x ) (2),

то уравнение (2) называют следствием уравнения (1).

Очевидно: Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

Схема решения любого уравнения:

1.Технический этап. Осуществляется преобразование уравнения (1)→(2)→(3)→(4) …

2 . Анализ решения. Все ли преобразования были равносильными?

Реализация данного плана связана с поиском ответов на четыре вопроса:

Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?

Какие преобразования могут перевести данное уравнение в уравнение-следствие?

Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?

В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

1.Теоремы о равносильности уравнений.

Теорема 1. Если какой либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение а f ( x ) =а g ( x ) ( где а>0, а≠1) равносильно уравнению f ( x )= g ( x ).

Определение: Областью определения уравнения f ( x )= g ( x ) или областью допустимых значений (ОДЗ) переменной называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f ( x ) и g ( x ).

Теорема 4. Если обе части уравнения f ( x )= g ( x ) умножить на одно и то же выражение h ( x ), которое:

А) имеет смысл всюду в области определения (в ОДЗ) уравнения f ( x )= g ( x )

Б) нигде в этой области не обращается в 0 –

то получится уравнение f ( x ) h ( x )= g ( x ) h ( x ), равносильное данному.

Следствие («спокойное» утверждение): Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f ( x )= g ( x ) неотрицательны в области определения уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение, равносильное данному f ( x ) n = g ( x ) n .

Теорема 6. Если f ( x ) >0 и g ( x ) >0, то логарифмическое уравнение log а f ( x )= log а g ( x ), где а>0, а≠1, равносильно уравнению f ( x )= g ( x ).

2. Преобразование данного уравнения в уравнение-следствие.

Если в процессе решения уравнения мы применили заключение одной из теорем 4,5,6, не проверив выполнения ограничительных условий, заложенных в формулировках теорем, то получится уравнение-следствие.

Некоторые переходы от одного уравнения к другому приводят к расширению области определения уравнения. Именно в добавленную часть ОДЗ и «проникают» посторонние корни.

Причины расширения области определения уравнения.

Освобождение в процессе решения уравнения от знаменателей, содержащих переменную величину.

Освобождение в процессе решения уравнения от знаков корней четной степени.

Освобождение в процессе решения уравнения от знаков логарифмов.

Обязательна проверка всех найденных корней, если:

произошло расширение области определ6ения уравнения.

осуществлялось возведение обеих частей уравнения в одну и ту же четную степень.

выполнялось умножение обеих частей уравнения на одно и то же выражение с переменной (разумеется, имеющее смысл во всей области определения уравнения).

3. О проверке корней.

Как правило, самый легкий обходной путь проверки – по области определения (ОДЗ) заданного уравнения. Но не переоценивайте этот способ: он является полноценным только в том случае, когда при решении уравнения других причин нарушения равносильности, кроме расширения области определения, не было (это чаще всего бывает в логарифмических уравнениях). При решении же иррациональных уравнений, где используется метод возведения в квадрат, способ проверки найденных корней по ОДЗ не выручит; лучше, если это возможно, делать проверку подстановкой.

О потере корней.

Причины потери корней при решении уравнений:

деление обеих частей уравнения на одно и то же выражение h ( x ) (кроме тех случаев, когда точно известно, что всюду в области определения уравнения выполняется условие h ( x ) ≠0).

сужение ОДЗ в процессе решения уравнения.

замена уравнения h ( f ( x ))= h ( g ( x )) уравнением f ( x )= g ( x ) в том случае, если функция

у= h ( x ) – немонотонная функция.

Этот метод можно применить только в том случае, если функция у= h ( x ) – монотонная функция.


источники:

http://nsportal.ru/shkola/algebra/library/2013/04/22/ravnosilnost-uravneniy-v-11-klasse

http://infourok.ru/konspekt-lekcii-dlya-klassov-po-teme-ravnosilnost-uravneniy-2910734.html