Конспект по теме системы уравнений

Системы линейных уравнений
план-конспект занятия

Системы линейных уравнений

Скачать:

ВложениеРазмер
teoriya._slu.doc115.5 КБ

Предварительный просмотр:

Перед тем, как перейти к написанию лекции . ОБЯЗАТЕЛЬНО посмотрите видеоурок. для того, чтобы понимать способы решения ЛУ.

Системы линейных уравнений

Определение 1. Системой линейных уравнений , содержащей m уравнений и n неизвестных, называется система вида

где числа a ij – называются коэффициентами системы, числа b ij – свободными членами.

Определение 2. Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она не имеет ни одного решения.

Определение 3. Совместная система называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения.

В последенем случае каждое решение системы называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему – это значит выяснить, совместна она или несовместна. Если совместна, найти ее общее решение.

1.2 Решение систем линейных уравнений. Метод Гаусса.

Пусть дана система m линейных уравнений с n неизвестными:

Матрица А = , составленная из коэффициентов при неизвестных х i (i = 1,2,…n), называется матрицей системы .

Матрица B = , составленная из коэффициентов при неизвестных и свободных членов, называется расширенной матрицей .

Определение 4. Матрица А называется матрицей треугольного вида , если все ее элементы выше (ниже) главной диагонали равны нулю.

Например, А = или В = — матрицы треугольного вида.

Метод Гаусса удобно использовать при решении систем с большим количеством уравнений. Этот метод заключается в последоваетльном исключении неизвестных. Систему линейных уравнений приводят к системе с треугольной матрицей с помощью эквивалентных преобразований. Затем из полученной системы переменные находят с помощью последовательных подстановок.

К эквивалентным преобразованиям относят следующие :

  • умножение и деление коэффициентов и свободных членов на одно и тоже число, отличное от нуля.
  • Сложение и вычитание уравнений.
  • Перестановка уравнений.
  • Исключение из системы уравнений, в которых все коэффициенты равны нулю.

Решить систему линейных уравнений методом Гаусса:

Выпишем расширенную матрицу системы:

Для упрощения вычислений поменяем первую и вторую строки местами:

Умножим первую строку на –3 и сложим ее со второй строкой. Первую строку умножим на –4 и сложим с третьей сторокой, получим эквивалентную матрицу:

Умножим вторую строку на –1:

Умножим вторую строку на 5 и сложим с третьей строкой:

Разделим третью строку на –11:

Получили матрицу треугольного вида (все элементы ниже главной диагонали равны нулю). Выпишем систему уравнений треугольного вида:

Ответ: х = -1, у = 3, z = 2

1.3 Решение систем линейных уравнений методом Крамера.

Для решения систем линейных уравнений с большим количеством уравнений применяют метод Гаусса. Если же уравнений в системе не так много, то удобнее использовать метод Крамера. Этот метод основан на вычислении определителей.

Пусть дана система n линейных уравнений с n неизвестными:

Составим определитель матрицы системы:

Заменим в определителе Δ первый столбик, соответствующий переменной х 1 , на столбец свободных членов b 1 , b 2 , …,b n , получим определитель Δ х1 :

Заменим в определителе Δ второй столбик, соответствующий переменной х 2 , на столбец свободных членов b 1 , b 2 , …,b n , получим определитель Δ х2 :

Аналогично поступаем с третьим, четвертым, …, n –ым столбцами определителя Δ . В итоге получим n+1 определитель. Для того, чтобы найти неизвестные х 1 , х 2 , …, х n используем формулы Крамера:

, , …,

При вычислении определителей могут возникнуть следующие случаи:

  • если определитель матрицы системы Δ отличен от 0, то система линейных уравнений имеет единственное решение;
  • если определитель матрицы системы Δ равен 0, а среди определителей Δ х1 , Δ х2 , …, Δ хn есть хотя один отличный от 0, то система линейных уравнений не имеет решений;
  • если определитель матрицы системы Δ равен 0 и все определители Δ х1 , Δ х2 , …, Δ хn равны 0, то система линейных уравнений имеет бесконечно много решений.

Решить систему линейных уравнений методом Крамера:

Выпишем определитель матрицы системы Δ и вычислим его:

Так как Δ 0, то система имеет единственное решение.

Заменим в определителе Δ первый столбик на столбец свободных коэффициентов, получим Δ х :

Заменим в определителе Δ второй столбик на столбец свободных коэффициентов, получим Δ у :

Найдем значения переменных х и у по формулам Крамера:

,

Решить систему линейных уравнений методом Крамера:

Выпишем определитель матрицы системы Δ и вычислим его:

Так как Δ 0, то система имеет единственное решение.

Заменим в определителе Δ первый столбик на столбец свободных коэффициентов, получим Δ х :

Заменим в определителе Δ первый столбик на столбец свободных коэффициентов, получим Δ у :

Заменим в определителе Δ первый столбик на столбец свободных коэффициентов, получим Δ z :

Найдем значения переменных х , у и z по формулам Крамера:

, ,

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №14. Алгебраические системы уравнений.

Перечень вопросов, рассматриваемых в теме:

1) определение алгебраической системы уравнений;

2) методы решений алгебраических систем уравнений;

3) симметрические системы уравнений.

Глоссарий по теме

Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.

Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.

Систему уравнений называют однородной, если P(x;y), Q(x;y) — однородные многочлены одной и той же степени, а а и b — действительные числа.

Уравнение P(x;y)= а, где, называют симметрическим, если P(х;y) — симметрический многочлен.

Систему двух уравнений с двумя переменными называют симметрической системой, если оба ее уравнения — симметрические.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

К определению системы уравнений будем подбираться постепенно. Сначала лишь скажем, что его удобно дать, указав два момента: во-первых, вид записи, и, во-вторых, вложенный в эту запись смысл. Остановимся на них по очереди, а затем обобщим рассуждения в определение систем уравнений.

Пусть перед нами несколько каких-нибудь уравнений. Для примера возьмем два уравнения 2·x+y=−3 и x=5. Запишем их одно под другим и объединим слева фигурной скобкой:

Записи подобного вида, представляющие собой несколько расположенных в столбик уравнений и объединенных слева фигурной скобкой, являются записями систем уравнений.

Что же означают такие записи? Они задают множество всех таких решений уравнений системы, которые являются решением каждого уравнения.

Не помешает описать это другими словами. Допустим, какие-то решения первого уравнения являются решениями и всех остальных уравнений системы. Так вот запись системы как раз их и обозначает.

А теперь можно сформулировать определение.

Определение. Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.

Мы будем решать сегодня, в основном, системы уравнений с двумя переменными.

Определение. Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.

Рассмотрим методы решения систем уравнений.

Методы решения систем уравнений.

Алгоритм решения системы двух уравнений с двумя переменными x,y методом подстановки:
1. Выразить одну переменную через другую из одного уравнения системы (более простого).
2. Подставить полученное выражение вместо этой переменной в другое уравнение системы.
3. Решить полученное уравнение и найти одну из переменных.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения в уравнение, полученное на первом шаге и найти вторую переменную.
5. Записать ответ в виде пар значений, например, (x;y), которые были найдены соответственно на третьем и четвёртом шаге.

Решить систему уравнений

1. Выразим x через y из второго (более простого) уравнения системы x=5+y.

2. Подставим полученное выражение вместо x в первое уравнение системы (5+y)⋅y=6

3. Решим полученное уравнение:

4. Подставим поочерёдно каждое из найденных значений y в уравнение x=5+y, тогда получим:

5. Пары чисел (−1;−6) и (6;1) — решения системы.

  1. Метод алгебраического сложения

Алгоритм решения системы двух уравнений с двумя переменными x,y методом сложения:
1. Уравнять модули коэффициентов при одном из неизвестных.
2. Сложить или вычесть уравнения.
3. Решить полученное уравнение с одной переменной.
4. Подставить поочерёдно каждый из найденных на третьем шаге корней уравнения в одно из уравнений исходной системы, найти второе неизвестное.

5. Записать ответ в виде пар значений, например, (x;y), которые были найдены.

  1. Метод введения новых переменных

При решении систем двух уравнений с двумя переменными метод введения новых переменных можно применять двумя способами:

1. вводится одна новая переменная и используется только в одном уравнении системы;

2. вводятся две новые переменные и используются одновременно в обоих уравнениях системы.

Решение: введем новые переменные xy= u, x+y=v.

Тогда систему можно переписать в более простом виде:

Решением системы является две пары чисел.

Первая пара чисел:

Вторая пара чисел:

Однако пара (0;0), являющаяся решением первого уравнения системы, не удовлетворяет второму уравнению, т. к. 0²-3·0·0 + 0² = 0 ≠-1. Отсюда х ≠0, и поэтому можем обе части первого уравнения системы разделить на х² ≠ 0 (это не приведет к потере корней). Разделив обе части первого уравнения системы на х², получим

.

получим t² -1 — 2 = 0 t₁ =2, t₂ =-1.

Таким образом, исходная система равносильна совокупности двух систем уравнений:

Первая из этих систем имеет два решения: х₁ =1, у₁ = 2; х₂ = -1; у₂ = -2.

Вторая система несовместна. Отсюда (1;2), (—1;—2) — решения исходной системы.

Решить систему уравнений

Сложим уравнения почленно.

Решим полученное уравнение с одной переменной.

Подставим поочередно каждый из найденных корней уравнения

в одно из уравнений исходной системы, например во второе, и найдём второе неизвестное.

если х=5, то 25+y 2 =29

если х=-5, то 25+y 2 =29

Пары чисел (−5;−2), (−5;2), (5;−2) и (5;2) — решения системы.

Конспект урока по теме: «Система уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Муниципальное общеобразовательное автономное учреждение «Средняя общеобразовательная школа № 4 г. Соль-Илецка»

Конспект урока по алгебре

«Системы линейных уравнений

с двумя переменными»

Урок алгебры в 7-м классе.

Тема: «Системы линейных уравнений»

Цель урока : сформировать представление о математической модели система уравнений , изучить графический метод решения систем уравнений.

Сформировать представление о математической модели система уравнений

Изучить графический метод решения систем линейных уравнений

Развить: ясность и точность мысли, интуицию, элементы алгоритмической культуры, способности к преодолению трудностей

воспитание эстетического восприятия математики посредством решения исторических задач.

Листы контрольных вопросов по теме «Линейные уравнения с двумя переменными».

Тип урока . Урок погружения в тему.

I этап. Мотивационный этап.

Учитель. Сегодняшний урок мне хотелось бы начать словами великого ученого и политика Альберта Эйнштейна: “Мне приходится делить время между политикой и уравнениями. Однако уравнение, по-моему, гораздо важнее. Политика существует только для данного момента, а уравнения будут существовать вечно”.

А девизом урока будут слова “Дорогу осилит идущий, а математику – мыслящий” .

II этап. Актуализация опорных понятий.

1. Из предложенных уравнений выберите линейное с двумя переменными

а) ах 2 + bx + c = 0; б) ax + by + c = 0; в) ax + b = 0

2. Дайте название математической модели 6(х – 2) + 5 = 19

а) уравнение б) равенство в) система уравнений

3 . Выберите решение уравнения 5х + 3у – 19 = 0

а) (2; 3); б) (5; 6); в) (1; 2)

4. Дайте название математической модели

а) уравнение б) равенство в) система уравнений

5. Выберите график линейного уравнения

6. Каково взаимное расположение на координатной плоскости графиков линейных функций:

III этап. Сообщение темы урока.

Исаак Ньютон сказал:

“ Чтобы решить вопрос, относящийся к числам
или к отвлеченным отношениям величин,
нужно лишь перевести задачу с родного языка
на язык алгебраический”.

Предлагаю вам задачу из “Всеобщей арифметики” Ньютона: Лошадь и мул шли бок о бок с тяжелой поклажей на спине. Лошадь жаловалась на свою непомерно тяжелую ношу. “Чего же ты жалуешься? – отвечал ей мул. – Ведь если я возьму у тебя один мешок, ноша моя станет вдвое тяжелее твоей. А вот если бы ты сняла с моей спины один мешок, то твоя поклажа стала бы одинакова с моей”. Скажите же, мудрые математики, сколько мешков несла лошадь и сколько мул?

Нарисуем таблицу (на доске таблица, правый столбик заполнен, левый заполняется совместно с учащимися).

Составим уравнения, которые должны выполняться одновременно.

Зная, что ноша моя станет тяжелее твоей, составим первое уравнение

твоя поклажа стала бы одинакова с моей, составим второе уравнение

Как вы думаете, какова же тема нашего урока?

(выслушиваются варианты детей, если они совпадают с темой урока то их ответы поощряются )

Чем мы будем сегодня заниматься на уроке?

Итак сегодня на уроке мы продолжим работать с системами уравнений.

Поэтому тема нашего сегодняшнего урока : «Системы двух линейных уравнений с двумя неизвестными. Графический метод решения линейных уравнений»

Нас интересует такая пара чисел, которая одновременно удовлетворяет и одному и другому уравнению. В таких случаях говорят, что математическая модель представляет собой систему уравнений.

Что значит решить систему?

Решить систему- значит найти все её решения или установить, что их нет.

Какими же методами можно решить систему двух линейных уравнений с двумя неизвестными: графический метод, метод подстановки, метод сложения

С каким методом решения системы уравнений с двумя переменными мы познакомились? В чем же он заключается? Как вы думаете?

Алгоритм решения систем двух линейных уравнений с двумя неизвестными графическим методом:

Построить в декартовой системе координат первое уравнение системы

Построить в той же декартовой системе координат второе уравнение системы

Если прямые пересекаются то координаты точки пересечения двух прямых и будут решением системы двух линейных уравнений с двумя неизвестными, если прямые параллельны, то система двух линейных уравнений с двумя неизвестными не имеет решений, если прямые совпадают то система двух линейных уравнений с двумя неизвестными имеет бесконечно много решений.

Некоторая система уравнений решена графически. Сколько решений имеет эта система уравнений? (слайды 15-19)

Некоторая система уравнений решена графически. Сколько решений имеет эта система уравнений?

Некоторая система уравнений решена графически. Сколько решений имеет эта система уравнений?

I V этап. Закрепление нового материла.

Давайте все таки решим задачу про мула и лошадь с помощью графического способа. Пользуемся алгоритмом.

Один ученик на доске под контролем учителя, применяя алгоритм решает задачу

V этап. Проверка домашнего задания.

Есть вопросы по решению домашнего задания ?

Убедитесь, что пара чисел (12;15) является решением системы уравнений: (слайды)

Является ли решением системы уравнений

пара чисел: а) (1;2); б) (4;3) в) (0;1)?

VI этап. Историческая справка.

Учитель. Мы повторили основные понятия систем линейных уравнений. Где же возникли первые задачи, решаемые системой двух линейных уравнений с двумя переменными?

Ученица 1. ЕГИПЕТ. Первые задачи на составление и решение систем уравнений с несколькими переменными встречаются в египетских и вавилонских текстах второго тысячелетия до нашей эры, а также в трудах древнегреческих и индийских ученых. Решались они различными искусственными способами, единого алгоритма не было.

Ученик 2. КИТАЙ. Алгоритм решения систем линейных уравнений был напечатан в Китае в труде “Математика в девяти книгах” (206 г. до н.э.), где рассматривались системы и давились правила их решения. При этом все изложение словесно. Коэффициенты системы располагались на счетной доске в виде таблицы. При повторных действиях было замечено, что следует поступать по одному и тому же правилу систематически. Первым появился способ сложения, а затем и способ подстановки. В книге “Всеобщая арифметика” (1707 г.) Ньютон излагает уже все способы решения систем, изучаемые ныне в школе.

VII этап. Тренировочные упражнения

Фронтальная работа: составить математическую модель и решить систему.

Я хочу прочитать задачу из «Курса алгебры» известного русского математика А.Н. Страннолюбского (1868 год), который был домашним учителем Софьи Ковалевской: «Некто на вопрос о возрасте двух его сыновей отвечал: «Первый мой сын втрое старше второго, а обоим им вместе столько лет, сколько было мне 29 лет тому назад; мне теперь 45 лет». Найдите лета обоих сыновей».

Для решения задачи мы составили систему уравнений

Масштаб возьмите в координатной плоскости за 2 единичных отрезка одну клетку.

Решая эту систему, мы получили ответ: х = 4, у = 12, т.е. сыновьям 4 года и 12 лет.

VIII этап. Итог урока.

Мы познакомились с системой двух линейных уравнений с 2 неизвестными , графическим методом решения систем уравнений.

В каком случае система имеет единственное решение?

В каком случае система не имеет решений ?

В каком случае говорят, что система имеет бесконечно много решений?

План – карта для решения систем линейных уравнений с двумя переменными графическим способом.

Графиками уравнений являются прямые. В одной и той же координатной плоскости построить графики уравнений

Найти координаты точки пересечения графиков

План – карта для решения систем линейных уравнений с двумя переменными способом подстановки.

Подставить полученное выражение в другое уравнение

Раскрыть скобки, привести подобные слагаемые.

Перенести слагаемые из одной части уравнения в другую и решить полученное линейное уравнение.

Подставить значение переменной в выражение (3) и вычислить значение другой переменной.

План – карта для решения систем линейных уравнений с двумя переменными способом сложения.

Перенести слагаемые из одной части уравнения в другую

Умножить одно или оба уравнения, на какое – либо число так, чтобы коэффициенты при одной из переменных были противоположны.

у = 2х – 3, -1 -у = -2х + 3,

у = х + 2; у = х + 2;

Сложить почленно полученные уравнения

Решить линейное уравнение

Подставить значение переменной в одно из уравнений. Например в уравнение (4)


источники:

http://resh.edu.ru/subject/lesson/3812/conspect/

http://infourok.ru/konspekt-uroka-po-teme-sistema-uravneniy-1489885.html