Конспект уравнение состояния идеального газа уравнение менделеева клапейрона

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 20. Уравнение состояния идеального газа. Газовые законы

Перечень вопросов, рассматриваемых на уроке:

1) уравнение состояния идеального газа и уравнение Менделеева — Клапейрона;

2) закон Дальтона, парциальное давление, закон Авогадро;

3) газовые законы и границы их применимости;

4) графики изохорного, изобарного и изотермического процесса;

5) определение по графикам характера процессов и макропараметров идеального газа;

6) применение модели идеального газа для описания поведения реальных газов.

Глоссарий по теме

Уравнение, связывающее три макроскопических параметра давление, объём и температура, называют уравнением состояния идеального газа.

Парциальное давление – давление отдельно взятого компонента газовой смеси, равно давлению, которое он будет оказывать, если занимает весь объем при той же температуре.

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами (изопроцессами).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика. 10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 209 – 218.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2009.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

Уравнение Клапейрона при m = const: отношение произведения давления и объёма к температуре есть величина постоянная для постоянной массы газа:

Если изменяется какой-либо макроскопический параметр газа постоянной массы, то два других параметра изменятся таким образом, чтобы указанное соотношение осталось постоянным.

Отношение произведения давления и объёма к температуре равно универсальной газовой постоянной для одного моля идеального газа.

Уравнение Менделеева при v = 1 моль

Произведение постоянной Больцмана и постоянной Авогадро называется универсальной газовой постоянной.

уравнение состояния идеального газа.

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона».

Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

где pi– парциальное давление i-й компоненты смеси.

Парциальное давление – давление отдельно взятого компонента газовой смеси, равное давлению, которое он будет оказывать, если занимает весь объём при той же температуре.

Один моль любого газа при нормальных условиях занимает один и тот же объём равный:

V0=0,0224м 3 /моль=22,4дм 3 /моль.

Это утверждение называется законом Авогадро

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами (изопроцессами).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Для газа данной массы произведение давления на объём постоянна, если температура газа не меняется — закон Бойля – Мариотта.

Изотерма соответствующая более высокой температуре T1, лежит на графике выше изотермы, соответствующей более низкой температуре T2.

Если значения давления и температуры в различных точках объёма разные, то в этом случае газ находится в неравновесном состоянии.

Равновесное состояние — это состояние, при котором температура и давление во всех точках объёма одинаковы.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Для газа данной массы отношение объема к температуре постоянно, если давление не изменяется — закон Гей-Люссака.

Изобара соответствующая более высокому давлению p2 лежит на графике ниже изобары соответствующей более низкому давлению p1.

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

При данной массе газа отношение давление газа к температуре постоянно, если объем газа не изменяется — закон Шарля.

Изохора соответствующая большему объему V2 лежит ниже изохоры, соответствующей меньшему объему V1.

Примеры и разбор решения заданий

1. Установите соответствие между физическими величинами и приборами для их измерения. К каждой позиции первого столбца подберите нужную позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

Конспект урока« Уравнение состояния идеального газа»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тема: Уравнение состояния идеального газа.

— вывести уравнение Менделеева- Клапейрона

— научить решать задачи по этой формуле.

— расширить кругозор учащихся, развитие логического мышления, интеллекта;

— уметь проводить сравнения, делать вводы;

— развить монологическую речь, уметь выступать перед аудиторией.

-научить добывать информацию из дополнительной литературы и из Интернета, анализировать её.

Воспитательные: — прививать интерес к предмету физика;

— научить самостоятельности, ответственности, уверенности;

— создать ситуацию успеха и дружеской поддержки в процессе урока

Оборудование и наглядные пособия:

Компьютер, видеопроектор, экран, презентация «Температура и ее измерение»

1.Тема урока, цель, задачи, содержание.

2. Проверка домашнего задания. Повторение изученного.

а) Презентация учащихся. «Температура и ее измерение»

б)У доски: физический диктант

1.Какая температура по шкале Кельвина соответствует температуре по шкале Цельсия:

2 .Какая температура по шкале Цельсия соответствует температуре по шкале Кельвина по абсолютной шкале:

1. 15К 2. 250К 3. 400К 4.304К

в) Фронтальный опрос

1. Что называется идеальным газом?

2.Назовите условия при которых газ можно считать идеальным.

3.Что называется концентрацией молекул?

4.Почему барабанная перепонка уха не продавливается бомбардирующими ее молекулами воздуха?( Барабанная перепонка уха человека не продавливается бомбардирующими ее молекулами воздуха, так как давления по обе стороны барабанной перепонки примерно равны.)

5.На высоте порядка сотен километров над Землей молекулы атмосферы имеют кинетическую энергию, которой соответствует температура порядка тысяч градусов Цельсия. Почему на такой высоте не плавятся искусственные спутники Земли?

(Спутники не плавятся, потому что на таких высотах концентрация молекул очень мала .)

в) трое учащихся выполняют на компьютерах тест «Молекулярная физика»( диск «Физикон)

3.Объяснение нового материала

Какова масса воздуха в нашем классе?

Ответы записать на доске. Выяснить после решения этой задачи, кто был прав?

1.Три фрагмента из электронного учебника ( Мякишев Г.Я., Буховцев Б.Б., 10 -11 КЛ)

Молекулярная картина теплообмена 1.

Молекулярная картина теплообмена 2.

Молекулярная картина теплообмена 3.

2.Вывод уравнения Менделеева- Клпейрона

Уравнением состояния называется уравнение, связывающее параметры физической системы и однозначно определяющее ее состояние.

В 1834 г. французский физик Б. Клапейрон , работавший длительное время в Петербурге, вывел уравнение состояния идеального газа для постоянной массы газа. В 1874 г. Д. И. Менделеев вывел уравнение для произвольного числа молекул.

В МКТ и термодинамике идеального газа макроскопическими параметрами являются: p, V, T, m.

Мы знаем, что . Следовательно, . Учитывая, что , получим: .

Произведение постоянных величин есть величина постоянная, следовательно: — универсальная газовая постоянная (универсальная, т.к. для всех газов одинаковая).

4. Решение задач.

Решить следующие задачи:

1.Какова масса воздуха в нашем классе?

Дано: воздух Решение

h =3м V = ав h = 162м 3 закон Менделеева — Клайперона

М=0,029 кг /моль Выразим массу

t =22° C Т= t + 273 =295К

Р=10 5 ПА m =10 5 ·162· 0,029 кг/8,31·295=191,6 кг

R =8,31 Ответ: 191,6 кг

Выяснить, кто был прав.

2. Определите давление 8кг кислорода О 2 , заключенного в

сосуд емкостью V =2м 3 при температуре 47 °С.

3. Определите объем т = 2\кг азота при t = 7°С Си давлении

4. Определите массу кислорода О 2 ,заключённого в баллон,

емкостью V = 3 м 3 при температуре t =27°С и давлении

5. Самостоятельная работа

1.Определите объем 4 кг кислорода О 2 , при температуре 17°С и давлении 2,9 ·10 5 Па (молярная масса кислорода равна 32·10· -3 кг/моль)

2. Найти массу углекислого газа при температуре Т=288к и давлении Р=9· 10 5 Па

6.Подведение итогов урока. Домашнее задание.

Анализ и оценка деятельности учащихся на уроке. Учащиеся обсуждают вместе с учителем результативность урока, оценивают свою деятельность

. 1.Сколько правильных ответов вы получили?

Урок по теме: «Уравнение Менделеева-Клапейрона»
методическая разработка по физике (10 класс) по теме

Тезисы работы_Емелюковой.doc:

Урок по теме: «Уравнение Менделеева-Клапейрона»

Тип урока: Комбинированный урок с использованием современных информационных технологий, метода проектов.

Цель урока: Познакомить учащихся с понятием уравнения состояния идеального газа. Рассмотреть физический смысл универсальной газовой постоянной.

1. Обучающие задачи: учащиеся находят общую зависимость (формулу), связывающую между собой все три макроскопические величины (p, V, T);

Знакомятся с универсальной газовой постоянной.

2. Развивающие задачи: учащиеся развивают активную мыслительную деятельность, волю, память, интеллект через задания исследовательского и поискового характера; повышают уровень активности, самостоятельности и качества знаний, используя знания при решении практических задач.

3. Воспитывающие задачи: учащиеся знакомятся с работой учёных в развитии физики; повышают умение слушать и говорить перед незнакомой аудиторией; рассматривают практическую значимость приобретённых знаний; формулируют мотивацию учения.

План урока:

  1. Этап. Организация начала урока.
  2. Этап. Проверка выполнения домашнего задания.
  3. Этап. Подготовка к активной У.П.Д. на основном этапе урока.
  4. Этап. Усвоение новых знаний.

5. Этап. Первичная проверка понимания учащимися нового учебного материала. 6. Этап. Закрепление знаний.

7 Этап. Подведение итогов урока.

Рекомендации: При просмотре плана урока необходимо обратить внимание на выделенные синим цветом ключевые слова ( при нажатии на них мы имеем связь с гиперссылкой на презентацию или приложение к данной части урока).

Выводы по уроку:

  1. Проведено углубление и расширение учебного материала, учащиеся ознакомлены с новыми сведениями за счёт обращения к разным источникам информации. Проведено обобщение вместе с учащимися по эффективности использования метода проектов на уроке.
  2. Показана роль физики в изучении природы. Выполнены упражнения на применение знаний об уравнении состояния идеального газа при решении задач.
  3. Был показан вклад учёных в исследовании общей зависимости (формулы), связывающей между собой три макроскопические величины(p, V, T) и развитии физики.
  4. Были использованы нестандартные ситуации в применении проверяемых знаний.
  5. Цель урока достигнута за счёт использования современных информационных технологий.

Скачать:

ВложениеРазмер
statya_emelyukovoy.doc.doc104.5 КБ
prilozhenie_1_emelyukovoy.doc_urok_uravnenie_mendeleeva-klapeyrona.ppt952 КБ
prilozhenie_3_emelyukovoy.doc_skhema_po_formulam-10_klass.doc519.25 КБ
prilozhenie_4_emelyukovoy.doc_uravnenie_mendeleeva-klapeyrona.doc20 КБ
prilozhenie_5_emelyukovoy.doc_fizicheskiy_smysl_universalnoy_gazovoy_postoyannoy.doc124 КБ
prilozhenie_6_emelyukovoy.doc_zadachi_po_teme_uravneniya_sostoyaniya_idealnogo_gaza.doc26 КБ
prilozhenie_7_emelyukovoy.doc_zadachi.doc46 КБ

Предварительный просмотр:

Урок по теме: «Уравнение Менделеева-Клаперона»

Тип урока: Комбинированный урок с использованием современных информационных технологий, метода проектов .

Цель урока: Познакомить учащихся с понятием уравнения состояния идеального газа. Рассмотреть физический смысл универсальной газовой постоянной.

1 . Обучающие задачи: учащиеся находят общую зависимость (формулу), связывающую между собой все три макроскопические величины ( p, V, T);

Знакомятся с универсальной газовой постоянной.

2. Развивающие задачи : учащиеся развивают активную мыслительную деятельность, волю, память, интеллект через задания исследовательского и поискового характера; повышают уровень активности, самостоятельности и качества знаний, используя знания при решении практических задач.

3. Воспитывающие задачи: учащиеся знакомятся с работой учёных в развитии физики; повышают умение слушать и говорить перед незнакомой аудиторией; рассматривают практическую значимость приобретённых знаний; формулируют мотивацию учения.

I этап : Приветствие учащихся (учитель отмечает отсутствующих, готовность к уроку)

II этап: (на экране слайды, презентации):

  1. Тема урока: «Уравнение Менделеева-Клапейрона»
  2. Цель урока.
  3. Задачи урока.
  4. домашнее задание: параграф 52, задачи №2,4 с листа. Образец вклеить в тетрадь.

Учащиеся записывают в дневник.

Учитель: для того, чтобы познакомиться с выводом Уравнения М-К, нам необходимо вспомнить понятия, формулы, изученные на предыдущих уроках.

  1. Назовите основные положения МКТ.
  2. Доказательством, какого положения МКТ служит явление, показанное в фильме? ( Видеофильм 2мин (см. приложение № 2), ответ: второго) А ещё?
  3. Как можно доказать первое положение МКТ? Третье положение МКТ?

Учитель открывает левую часть доски сзади:

7 человек выходят по очереди к доске.

  1. Как называется данная физическая величина?
  2. В каких единицах она измеряется?

Учитель: Мы с вами повторили все физические величины и их единицы измерения, теперь я хочу обратить ваше внимание на схему на доске (см. приложение № 3 ).

IV этап: Учитель устно задаёт вопросы и на правой части доски с помощью магнитов вывешивает схему (см. приложение № 4):

  1. Какие три макроскопические параметра вы знаете? (ответ: P, V, T)
  2. Почему их назвали макроскопическими? (ответ: Эти параметры характеризуют большие масштабы)
  3. Назовите единицы измерения каждой из этих величин.(ответ: 1Па, 1м 3 , 1К)

Учитель перед классом ставит проблему – найти общую зависимость (формулу), связывающую между собой три макроскопические величины.

Учитель: Нам известны три формулы, которыми мы пользуемся:

p =n k T; n=N/V; N=m/M*Na

Учитель начинает вывод сам на основной доске:

p =N/V* k *T=1/V*m/M*Na* k *T

Далее: Мы видим произведение двух постоянных величин в физике.

Учитель переходит на левую переднюю часть доски, делает вывод универсальной газовой постоянной( вывешивает на магнитах листы):

Na=6, 02*10 23 моль -1

k =1, 38*10 -23 Дж/ k

  1. Как называются данные постоянные величины? (Постоянная Авогадро, постоянная Больцмана)
  2. Каков физический смысл постоянной Авогадро? (физический смысл постоянной Авогадро-число атомов (или молекул), содержащихся в 1 моле любого вещества)
  3. Каков физический смысл постоянная Больцмана? (физический смысл постоянной Больцмана — является коэффициентом, переводящим температуру из градусной меры ( k) в энергетическую (Дж) и обратно)

Учитель: В физике произведение двух постоянных величин заменяют универсальной газовой постоянной и её обозначают:

На доске : R (эр)-универсальная газовая постоянная.

Давайте найдём её числовое значение:

R=Na*k=6, 02*10 23 моль -1 * 1, 38*10 -23 Дж/k = 8, 31*10 23 *10 -23 1/моль * Дж/k=8, 31 Дж/моль*k

учитель вывешивает на правую часть доски

Рассмотрим её физический смысл:

Характеризует внутреннюю энергию моля идеального газа в расчёте на один Кельвин.

Учитель снова возвращается на основную доску и завершает вывод Уравнение Менделеева-Клапейрона

Учитель:

это и есть уравнение Менделеева-Клапейрона, его ещё называют уравнением состояния идеального газа.

Клапейрон — французский физик, работавший около 10 лет в России.

Менделеев — великий русский учёный.

Учитель : Какой газ называют идеальным ? (ответ: идеальный газ – это газ, взаимодействие между молекулами которого пренебрежимо мало)

Учитель: Не только идеальный газ, но и любая реальная система – газ, жидкость, твёрдое тело – характеризуется своим уравнением состояния.

Знать уравнение состояния необходимо при исследовании тепловых явлений.

Что оно позволяет определить? Предоставляю слово докладчику.

Учащийся с докладом:

  1. одну из физических величин, если две другие известны (это используют в терминах)
  1. зная уравнение состояния, можно сказать, как протекают в системе в различные процессы при определённых внешних условиях.
  2. зная уравнение состояния, можно определить, как меняется состояние системы, если она совершает работу или получает теплоту от окружающих тел.

Например: учитель демонстрирует опыт с колоколом воздушного насоса (шарик):

Опыт: меняем p, изменяется V, при T=Const

Учитель: Я предоставляю слово учащемуся:

Демонстрация опыта: шарик с водой, двухлитровая банка, сжечь бумагу, поместить в банку. Шарик сам опускается вниз.

Учащийся : вопрос классу:

Слайды: 1.почему шар оказался в банке? Как изменяются p, V, T?

2. составить вопросы по опыту: какая связь просматривается с другими темами физики? (домашнее задание)

Учащиеся сами читают условие задачи:

1. Если T идеального газа увеличить в 2 раза, то как изменится p? (ответ в 2 раза).

2. если v идеального газа уменьшить в 3 раза, то как изменится p? (домашнее задание), (ответ в 3 раза).

VI этап : закрепление.

Учитель: вопросы: (слайд)

  1. что нового вы сегодня узнали на уроке? ( ответ: уравнение Менделеева-Клапейрона, универсальное газовое постоянное)
  2. Назовите мне все физические величины. Входящие в уравнение Менделеева-Клапейрона и их единицы измерения.

VII этап: выводы по уроку.

Слайд с задачами на урок. Учитель обращает внимание учащихся, что все поставленные задачи выполнены, цель достигнута.

Поблагодарить за урок.

Слайд: спасибо за урок.

Учитель сам у доски

Дано: СИ Решение:

M h2 = 2*10 -3 кг/моль

V = 20 л = 0, 02м -3 m= (p*V*M)/(R*T)

t º = 17 º C = 290 К m= (830*0, 02*2*10 -3 )/8,31*290=

R=8,31Дж/моль*К 0, 014*10 -3 =1, 4* 10 -5 кг = 14 мг

[m] = Па*м 3 *(кг/моль) / (Дж/моль*К)*К = кг

Предварительный просмотр:

Подписи к слайдам:

Предварительный просмотр:

Предварительный просмотр:

Предварительный просмотр:

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Физический смысл универсальной газовой постоянной: характеризует внутреннюю энергию моля идеального газа в расчете на один Кельвин.

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Дано: Решение: Вычисления:

N 2 P= 1 / 3 ρ P = 1 / 3 · 1, 35 ·500 2 = 0,11МПа

ρ = 1, 35 кг\м 3 [Р] = = Па

Предварительный просмотр:

Задачи по теме: « Уравнения состояния идеального газа».

1. Если T идеального газа изменить, увеличить в 2 раза, то как измениться P-?

  1. Если V идеального газа уменьшить в 3 раза, то как измениться P-?
  2. Какое количество вещества содержится в газе, если при давлении 200 кПа и температуре 240 К его объем равен 40 л?
  3. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12 º С, если масса этого воздуха 2 кг?
  4. В каких слоях атмосферы воздух ближе к идеальному газу: у поверхности Земли или на больших высотах?
  5. Определите массу водорода, находящегося в баллоне вместимостью

20 л под давлением 830 Па при температуре 17 º С.

  1. Газ занимает объем 100 л при нормальном атмосферном давлении и комнатной температуре 20 º С. Каково количество вещества газа? Сколько молекул газа в этом сосуде?
  2. Определите температуру азота, имеющего массу 2 г, занимающего объем 830 см ³ при давлении 0,2 МПа.
  3. Баллон, вместимостью 40 л содержит 1,98 кг углекислого газа. Баллон выдерживает давление не выше 30 · 10 5 Н/м 2 . При какой температуре возникает опасность взрыва?
  4. Газ массой 16 г при давлении 1 МПа и температуре 112 º С занимает объем1,6 л. Определите, какой это газ.
  5. В баллоне вместимостью 200 л находится гелий под давлением 100 кПа при температуре 7 º С. После подкачивания гелия его давление поднялось до 300 кПа, а температура увеличилась до 47 º С. На сколько увеличилась масса гелия?
  6. Найти массу природного горючего газа объемом 64 м ³ , считая, что объем указан при н.у. Молярную массу природного горючего газа считать равной молярной массе метана (СН 4 ).
  7. Воздух объемом 1,45 м ³ , находящийся при температуре 20 º С и давлении 100 кПа, превратили в жидкое состояние. Какой объем займет жидкий воздух, если его плотность 861 кг/м ³ ?
  8. Баллон, какой вместимости нужен для содержания в нем газа, взятого в количестве 50моль, если при максимальной температуре 360 К давление не должно превышать 6 МПа?
  9. Определите плотность азота при температуре 27 º с и давлении 100 кПа.

Предварительный просмотр:

Дано: СИ: Решение: Вычисления:

р=200кПа =2 ∙ 10 5 Па P · V= √· R ∙ T 2 ∙ 10 5 · 4 · 10 -2

Т=240К P ∙ V √ = 8,31 · 240 =4 Моль

V=40л =4 · 10 -2 м ³ √= R∙T Па· м 3

[√] = Дж ·К =

R=8, 31 Моль ∙к = Н ·м 3 ·моль·К

м ² =

= Н · м · м ² =Моль

Дано: СИ: Решение: Вычисления:

р=200кПа =2 ∙ 10 5 Па P · V= √· R ∙ T 2 ∙ 10 5 · 4 · 10 -2

Т=240К P ∙ V √ = 8,31 · 240 =4 Моль

V=40л =4 · 10 -2 м ³ √= R∙T Па· м 3

[√] = Дж ·К =

R=8, 31 Моль ∙к = Н ·м 3 ·моль·К

м ² =

= Н · м · м ² =Моль

Дано: СИ: Решение: Вычисления:

р=200кПа =2 ∙ 10 5 Па P · V= √· R ∙ T 2 ∙ 10 5 · 4 · 10 -2

Т=240К P ∙ V √ = 8,31 · 240 =4 Моль

V=40л =4 · 10 -2 м ³ √= R∙T Па· м 3

[√] = Дж ·К =

R=8, 31 Моль ∙к = Н ·м 3 ·моль·К

м ² =

= Н · м · м ² =Моль

Дано: СИ: Решение: Вычисления:

р=200кПа =2 ∙ 10 5 Па P · V= √· R ∙ T 2 ∙ 10 5 · 4 · 10 -2

Т=240К P ∙ V √ = 8,31 · 240 =4 Моль

V=40л =4 · 10 -2 м ³ √= R∙T Па· м 3

[√] = Дж ·К =

R=8, 31 Моль ∙к = Н ·м 3 ·моль·К

м ² =

= Н · м · м ² =Моль

Дано: СИ: Решение: Вычисления:

р=200кПа =2 ∙ 10 5 Па P · V= √· R ∙ T 2 ∙ 10 5 · 4 · 10 -2

Т=240К P ∙ V √ = 8,31 · 240 =4 Моль

V=40л =4 · 10 -2 м ³ √= R∙T Па· м 3

[√] = Дж ·К =

R=8, 31 Моль ∙к = Н ·м 3 ·моль·К

м ² =

= Н · м · м ² =Моль

Дано: СИ: Решение: Вычисления:

р=200кПа =2 ∙ 10 5 Па P · V= √· R ∙ T 2 ∙ 10 5 · 4 · 10 -2

Т=240К P ∙ V √ = 8,31 · 240 =4 Моль

V=40л =4 · 10 -2 м ³ √= R∙T Па· м 3

[√] = Дж ·К =

R=8, 31 Моль ∙к = Н ·м 3 ·моль·К

м ² =

= Н · м · м ² =Моль


источники:

http://infourok.ru/konspekt-uroka-uravnenie-sostoyaniya-idealnogo-gaza-733825.html

http://nsportal.ru/shkola/fizika/library/2014/01/21/urok-po-teme-uravnenie-mendeleeva-klapeyrona