Контроль на простейшие тригонометрические уравнения

Контроль на простейшие тригонометрические уравнения

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Урок математики по теме «Проверка корней тригонометрического уравнения»

Презентация к уроку

Из опыта подготовки учащихся к ЕГЭ, хотелось бы обратить внимание на проверку корней тригонометрического уравнения.

В 10 классе в связи с изучением периодичности тригонометрических функций важно привить учащимся навыки в нахождении периодов таких, например, несложных тригонометрических выражений, как sin 2x, cos (+30°), tg x, ctg 4x и т.д. Учащиеся должны вынести из 10 класса ясное представление о том, что периодом выражений sin (ax+b) и cos (ax+b) служит угол , a периодом выражений tg (ax+b) и ctg (ax+b) является угол . Все это нужно вновь напомнить учащимся в 11 классе.

В основу метода проверки корней тригонометрического уравнения следует положить понятие периода уравнения.

Пусть дано, например, уравнение:

= .

Легко заметить, что периодом этого уравнения может служить угол 180°. Действительно,

cos 4(x+180°) = cos (4 x+2*360°) = cos 4 x,

sin 2(x+180°) = sin (2 x+360°) = sin 2 x и т.д.

Чтобы найти период тригонометрического уравнения, достаточно найти периоды каждой функции, входящей в это уравнение, а затем отыскать их наименьшее общее кратное.

Чтобы найти, пользуясь этим правилом, период вышеприведенного тригонометрического уравнения, надо рассуждать следующим образом: так как период каждой из функций sin 4x и cos 4x равен = 90°, а период каждой из функций sin 2x и cos 2x есть 360°/2 = 180°, то периодом уравнения будет наименьшее общее кратное углов 90° и 180°, то есть 180°.

Методику проверки корней тригонометрического уравнения хорошо уяснить на следующем примере.

Пример. Решить уравнение:

и проверить найденные корни.

(1 — 2x)+ 3 sin x = 2,

2 x — 3 sin x +1 = 0.

sin =1, sin =1/2

=360°n + 90°,

=180°n + 30°.

Полученное множество корней бесконечно. Чтобы проверить все корни, достаточно произвести проверку только тех из них, которые лежат в пределах одного периода уравнения. Так как периодом уравнения (1) служит угол в 360°, то проверить нужно лишь корни, которые удовлетворяют неравенству:

-180°180°.

Если придавать n различные целые значения (положительные, отрицательные или нуль), то мы обнаружим лишь три корня, удовлетворяющие этому неравенству, а именно:

После подстановки их в исходное уравнение (1) найдем, что каждый из них обращает это уравнение в верное числовое равенство. Действительно,

cos 60° + 3 sin 30° = += 2,

cos 300 + 3 sin 150° =+= 2.

Есть одно затруднение, с которым сталкиваются учащиеся при решении тригонометрических уравнений. Иногда общий вид углов, правильно найденный учеником при решении тригонометрического уравнения, не совпадает с общим видом углов, указанным в ответе к задаче. Если учитель не обращает на это внимание, то у ученика порой возникает необоснованное сомнение в правильности своего решения. Рассеять это сомнение можно только посредством доказательства, что множество всех корней , найденное учеником, и множество всех корней, определяемое общей формулой в ответе задачи, между собой совпадают. Допустим, что при решении уравнения

= cos

учеником получены корни:

=720°n ± 120°,

,

а ответ задачи дан в другой форме:

Для того, чтобы убедиться в равносильности того и другого ответа, найдем сначала период уравнения (он равен 720°), а затем отыщем в обоих случаях корни, лежащие в пределах этого периода, то есть удовлетворяющие неравенству:

360°.

Легко убедиться, что такими корнями в обоих случаях будут лишь ±120° и 360°. Совпадение корней, лежащих в пределах одного периода уравнения, указывает на равносильность обоих ответов.

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)


источники:

http://urok.1sept.ru/articles/630133

http://ya-znau.ru/znaniya/zn/280