Контрольная работа систем линейных уравнений методом гаусса

Контрольная работа на тему: системы линейных уравнений

Системы линейных уравнений

Задание: Решение систем линейных уравнений по правилу Крамера и методом Гаусса.

Цель: формирование умения решать системы линейных уравнений по правилу Крамера и методом Гаусса.

Задание для самостоятельной внеаудиторной работы:

5.1. Изучите теоретические основы решения системы линейных уравнений по правилу Крамера и методом Гаусса.

5.2. Решите систему уравнений, используя правило Крамера:

5.3. Решите систему линейных уравнений по методу Гаусса:

5.4. Фирма для перевозки грузов может заказывать машины трех видов. Если она закажет по одной машине каждого вида, то перевезёт 12 тонн груза. Если закажет по две машины первого и второго вида и одну машину третьего вида, то перевезёт 19 тонн груза. Если же фирма закажет по две машины первого и третьего вида и одну машину второго вида, то перевезёт 20 тонн груза. Какова грузоподъемность каждого вида машин?

Методические указания по выполнению работы:

Для решения систем линейных уравнений применяют правило Крамера и метод Гаусса.

1. Правило Крамера решения системы линейных уравнений с неизвестными.

Система линейных уравнений с неизвестными имеет единственное решение, если определитель , составленный из коэффициентов при неизвестных, отличен от нуля:

где — определитель, полученный из определителя заменой столбца коэффициентов при столбцом свободных членов;

— определитель, полученный из определителя заменой столбца коэффициентов при столбцом свободных членов;

— определитель, полученный из определителя заменой столбца коэффициентов при столбцом свободных членов.

Пример 1.

Решите систему уравнений по правилу Крамера:

Решение:

Составим определитель из коэффициентов при неизвестных и вычислим его:

Определитель отличен от 0, следовательно, система имеет единственное решение. Для его нахождения вычислим , и :

По правилу Крамера найдем неизвестные:

Замечание. Для проверки правильности решения системы уравнений необходимо подставить найденные значения неизвестных в каждое из уравнений данной системы. При этом, если все уравнения обратятся в тождества, то система решена верно.

Истинно.

Итак, решение системы найдено правильно.

Ответ:

2. Метод Гаусса решения систем линейных уравнений

  1. Составьте расширенную матрицу системы — матрицу, состоящую из коэффициентов при неизвестных и столбца свободных членов.
  2. С помощью элементарных преобразований приведите полученную матрицу к ступенчатому виду.
  3. Восстановите систему линейных уравнений, равносильную исходной, начиная с последнего уравнения, и найдите значения неизвестных.

Метод Гаусса является более универсальным, чем правило Крамера, так как позволяет находить решения в следующих случаях:

  1. число уравнений не равно числу неизвестных.
  2. если в правиле Крамера .

Ответ на вопрос о существовании и количестве решений системы линейных уравнений дает теорема Кронекера-Капелли (критерий совместности системы линейных уравнений): система линейных уравнений с неизвестными совместна тогда и только тогда, когда ранг основной матрицы (матрицы, составленной из коэффициентов при неизвестных) равен рангу расширенной матрицы , причем:

  1. если (ранг матрицы равен числу неизвестных), то система имеет единственное решение;
  2. если (ранг матрицы меньше числа неизвестных), то система имеет бесконечное множество решений.

Все возможные случаи решения системы линейных уравнений (одно решение, нет решений, множество решений) разобраны в примерах 2-4.

Пример 2.

Решите систему уравнений методом Гаусса:

Решение:

Выпишем расширенную матрицу системы и приведем её к ступенчатому виду:

Поменяем местами первую и третью строки матрицы, что равносильно перестановке первого и третьего уравнений системы. Это позволит нам избежать появления дробных коэффициентов
при последующих вычислениях.

Первую строку полученной матрицы умножаем последовательно на (-2) и (-3) и сложим соответственно со второй и третьей строками, при этом будет иметь вид:

Для упрощения вычислений умножим третью строку на (-0,1) и поменяем ее местами со второй строкой. Тогда получим:

Далее, умножая вторую строку матрицы на 9 и складывая с третьей, окончательно получим:

Восстановим из полученной матрицы систему уравнений, равносильную данной, начиная с последнего уравнения:

Из последнего уравнения находим: .

Подставим во второе уравнение системы: .

После подстановки и в первое уравнение получим: ; . Итак, .

Следовательно, решение системы найдено верно.

Ответ: .

Пример 3.

Найдите все решения системы линейных уравнений:

Решение:

Составим расширенную матрицу системы и приведем ее к ступенчатому виду.

Домножим первую строку на (-2) и сложим ее со второй строкой:

Сложим первую и третью строки:

Домножим вторую строку на 2 и сложим ее с третьей строкой:

Вычеркнем нулевую строку:

Видим, что ранг основной матрицы равен рангу расширенной матрицы и равен двум. Следовательно, в силу критерия Кронеккера-Капелли, система имеет решения. Так как ранг матрицы (два) меньше числа неизвестных (три), то система имеет бесчисленное множество решений. Найдем эти решения.

Восстановим систему уравнений, равносильную исходной:

Пусть — свободная переменная, которая может принимать любые числовые значения. Выразим из первого уравнения : .

Подставим данное выражение во второе уравнение:

Такое решение будем называть общим решением системы. Запишем общее решение системы в виде тройки чисел: .

Ответ: .

Пример 4.

Докажите, что система линейных уравнений не имеет решений:

Решение:

Составим расширенную матрицу системы и приведем ее к ступенчатому виду.

Домножим первую строку на (-3) и сложим ее со второй строкой:

Домножим первую строку на 2 и сложим ее с третьей строкой:

Сложим вторую и третью строки:

Видим, что ранг основной матрицы (2) не равен рангу расширенной матрицы (3). Следовательно, в силу критерия Кронеккера-Капелли, система не имеет решений.

На этой странице вы сможете посмотреть все остальные темы готовых контрольных работ по высшей математике:

Обратите внимание на похожие контрольные работы возможно они вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Контрольная работа «Методы решения систем линейных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Контрольная работа №1

Системы линейных уравнений ТЕМА 1. Системы линейных уравнений.

Матрицы и действия с ними.

Определители и их основные свойства.

Методы решения систем линейных уравнений.

СПИСОК ЛИТЕРАТУРЫ

Ильин В. А., Позняк Э. Г. Линейная алгебра: Учеб. для вузов.-5-е изд., стер. — М.: Физматлит, 2002. – 317 с.

Беклемишев Д. В. Курс линейной алгебры и аналитической геометрии: — М.: Физматлит, 2003. – 303 с.

Клетеник Д. В. Сборник задач по аналитической геометрии: Учеб. пособие для втузов / ред. Ефимов Н. В. – 17-е изд., стер. – СПб: Профессия, 2001. – 199 с.

Бугров Я.С., Никольский С.М. Высшая математика: Учеб.для вузов: в 3т.-5-е изд., стер.-М.:Дрофа.- (Высшее образование. Современный учебник). т.1. Элементы линейной алгебры и аналитической геометрии.-2003.-284 с.

Данко П.Е. и др. Высшая математика в упражнениях и задачах (с решениями): в 2 ч./ Данко П.Е., Попов А.Г., Кожевникова Т.Я -6-е изд..-М.: ОНИКС 21 век, ч.1. -2002.-304 с.

Решение типового варианта контрольной работы.

Задача 1. Вычислить определитель .

Решение. Для вычисления определителя третьего порядка будем использовать известную формулу Саррюса (правило треугольников), которое может быть записано следующей формулой:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Решим систему матричным способом, для этого вычислим обратную матрицу , где — алгебраические дополнения к элементам матрицы.

— матрица невырожденная.

Решим систему методом Крамера. Главный определитель системы:

. Разложим определитель по элементам первой строки, пользуясь формулой .

Запишем и вычислим вспомогательные определители

Тогда

Ответ:

Решим систему методом Гаусса, для этого составим расширенную матрицу системы и упростим ее приведением к треугольному виду.

Таким образом, система равносильна системе

Находим

Ответ: , ,

При решении всеми методами одной и той же системы, мы получим один ответ.

Задача 3. Выполнить действия:

Решение. Выполним решение по действиям.

=

.

.

Ответ: .

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Если , , то произведением матрицы называется матрица , такая, что , где .

Пример:

Произведение не определено, так как число столбцов матрицы А (3) не совпадает с числом строк матрицы В (2).

Произведение определено.

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера

Задача 3. Выполнить действия:

Контрольная работа №1.

Задача 1. Вычислить определитель:

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера

Контрольная работа: Метод Гаусса для решения систем линейных уравнений

1. Система линейных алгебраических уравнений

1.1 Понятие системы линейных алгебраических уравнений

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Системой линейных алгебраических уравнений (далее – СЛАУ), содержащей m уравнений и n неизвестных, называется система вида:

где числа aij называются коэффициентами системы, числа bi – свободными членами, aij и bi (i=1,…, m; b=1,…, n) представляют собой некоторые известные числа, а x1 ,…, xn – неизвестные. В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент. Подлежат нахождению числа xn . Такую систему удобно записывать в компактной матричной форме: AX=B. Здесь А – матрица коэффициентов системы, называемая основной матрицей;

– вектор-столбец из неизвестных xj.

– вектор-столбец из свободных членов bi.

Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов

1.2 Решение системы линейных алгебраических уравнений

Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Решением системы называется n значений неизвестных х1=c1, x2=c2,…, xn=cn, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записать в виде матрицы-столбца

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему – это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Преобразование, применение которого превращает систему в новую систему, эквивалентную исходной, называется эквивалентным или равносильным преобразованием. Примерами эквивалентных преобразований могут служить следующие преобразования: перестановка местами двух уравнений системы, перестановка местами двух неизвестных вместе с коэффициентами у всех уравнений, умножение обеих частей какого-либо уравнения системы на отличное от нуля число.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

Однородная система всегда совместна, так как x1=x2=x3=…=xn=0 является решением системы. Это решение называется нулевым или тривиальным.

2. Метод исключения Гаусса

2.1 Сущность метода исключения Гаусса

Классическим методом решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных – метод Гаусса (его еще называют методом гауссовых исключений). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Процесс решения по методу Гаусса состоит из двух этапов: прямой и обратный ходы.

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним.

После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид:

,

где

Коэффициенты aii называются главными (ведущими) элементами системы.

Будем считать, что элемент (если a11=0, переставим строки матрицы так, чтобы a 11 не был равен 0. Это всегда возможно, т. к. в противном случае матрица содержит нулевой столбец, ее определитель равен нулю и система несовместна).

Преобразуем систему, исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы (или из второго уравнения почленно вычтем первое, умноженное на ). Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы (или из третьего почленно вычтем первое, помноженное на ). Таким образом, последовательно умножаем первую строку на число и прибавляем к i -й строке, для i= 2, 3, …, n.

Продолжая этот процесс, получим эквивалентную систему:

Здесь – новые значения коэффициентов при неизвестных и свободные члены в последних m-1 уравнениях системы, которые определяются формулами:

Таким образом, на первом шаге уничтожаются все коэффициенты, лежащие под первым ведущим элементом a11 0, на втором шаге уничтожаются элементы, лежащие под вторым ведущим элементом а22 (1) (если a22 (1) 0) и т.д. Продолжая этот процесс и дальше, мы, наконец, на (m-1) шаге приведем исходную систему к треугольной системе.

Если в процессе приведения системы к ступенчатому виду появятся нулевые уравнения, т.е. равенства вида 0=0, их отбрасывают. Если же появится уравнение вида то это свидетельствует о несовместности системы.

На этом прямой ход метода Гаусса заканчивается.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений.

Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (она в нем всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Примечание: на практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11).

2.2 Примеры решения СЛАУ методом Гаусса

В данном разделе на трех различных примерах покажем, как методом Гаусса можно решить СЛАУ.

Пример 1. Решить СЛАУ 3-го порядка.

Обнулим коэффициенты при во второй и третьей строчках. Для этого домножим их на 2/3 и 1 соответственно и сложим с первой строкой:

Теперь обнулим коэффициент при в третьей строке, домножив вторую строку на 6 и вычитая из неё третью:

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

из третьего;

из второго, подставив полученное ;

из первого, подставив полученные и .

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

Пример 2. Решить неопределенную СЛАУ 4-го порядка:

В результате элементарных преобразований над расширенной матрицей системы

исходная система свелась к ступенчатой, где количество уравнений меньше, чем количество неизвестных:

Поэтому общее решение системы: x2=5×4–13×3–3; x1=5×4–8×3–1. Если положить, например, что x3=0, x4=0, то найдем одно из частных решений этой системы x1=-1, x2=-3, x3=0, x4=0.

Пример 3. Решить СЛАУ 4-ого порядка.

х1 – 2х 2 – х3 + х4 = 1

Перепишем систему линейных алгебраических уравнений в матричную форму. Получится матрица 4х5, слева от разделительной линии стоят коэффициенты при переменных, а справа стоят свободные члены.

Проведём следующие действия:

a) из второй строки вычтем первую строку (cтрока 2 – строка 1);

b) из третьей строки вычтем первую строку, умноженную на 2 (cтрока 3–2 х строка 1)

c) из четвертой строки вычтем первую строку (cтрока 4 – строка 1). Получим:

Проведём следующие действия:

a) к третьей строке прибавим вторую строку (строка 3 + строка 2);

b) четвертую строку поделим на 3 (строка 4 = строка 4 / 3). Получим:

Проведём следующие действия:

a) четвертую строку поставим на место второй строки;

b) третью строку поставим на место четвертой строки;

c) вторую строку поставим на место третьей строки. Получим:

К третьей строке прибавим вторую строку, умноженную на 6 (строка 3 + 6 × строка 2). Получим:

Проведём следующие действия:

a) к третьей строке прибавим четвертую, умноженную на 4 (строка3 + 4×строка4);

b) из первой строки вычтем четвертую строку (строка 1 – строка 4);

c) третью строку поделим на 5 (строка 3 = строка 3 / 5). Получим:

Проведём следующие действия:

a) из второй строки вычтем третью строку (строка 2 – строка 3);

b) к первой строке прибавим третью строку (строка 1 + строка 3). Получим:

c) К первой строке прибавим вторую строку, умноженную на 2 (строка 1 + 2 × строка 2). Получим:

В левой части матрицы по главной диагонали остались одни единицы. В правом столбце получаем решение:

3. Преимущества и недостатки метода Гаусса

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a) менее трудоёмкий по сравнению с другими методами;

b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c) позволяет найти максимальное число линейно независимых уравнений – ранг матрицы системы.

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная: , после чего приводится к виду единичной матрицы методом Гаусса–Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица: );

b) определения ранга матрицы (согласно следствию из теоремы Кронекера–Капелли ранг матрицы равен числу её главных переменных);

c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.

1. Кремер Н.Ш., Путко Б.А. Высшая математика для экономистов. — М.: Учеб. пособие, 1998.

2. Курош А.Г. Курс высшей алгебры. — М.: Учеб. пособие, 1968.

3. Справочник по математике для экономистов. Под ред. В.И. Ермакова // Инфра-М, Москва – 2009.


источники:

http://infourok.ru/kontrolnaya-rabota-metodi-resheniya-sistem-lineynih-uravneniy-675901.html

http://www.bestreferat.ru/referat-180751.html

Название: Метод Гаусса для решения систем линейных уравнений
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 00:27:45 12 декабря 2010 Похожие работы
Просмотров: 9756 Комментариев: 26 Оценило: 5 человек Средний балл: 4.8 Оценка: неизвестно Скачать