Конъюнкция двух и более уравнений это уравнений

Лекция 8. Конъюнкция и дизъюнкция высказываний.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Лекция 8. Конъюнкция и дизъюнкция высказываний.

КОНЪЮНКЦИЕЙ (или логическим произведением) двух высказываний называется высказывание «А и В», которое истинно тогда и только тогда, когда оба высказывания истинны ( А истинно и В истинно). Во всех остальных случаях высказывание «А и В» ложно.

Обозначают: А; А. Читают «А и В». Слово «конъюнкция» произошло от латинского слова «conjunctio» — соединение, связь. В отличие от операции отрицания, зависящей от одного элементарного высказывания, конъюнкция, как и все последующие изучаемые нами связки, зависит от двух элементарных высказываний.

Для задания таких связок удобно записывать таблицы истинности:

Согласно определению, конъюнкция двух элементарных высказываний истинна только в том случае, когда истинны оба высказывания, ее образующие (строка 1), и ложна в любом другом случае (строка2,3,4).

КОНЪЮНКЦИЯ А = истинна только тогда, когда Петя любит физику, а математику не любит. В остальных трех случаях, т.е. когда Петя:

не любит математику и не любит физику,

любит математику и физику,

любит математику, но не любит физику

высказывание А В ложно.

Достаточно часто для выражения конъюнкции вместо союза «и» используются союзы «а», «но», «хотя», «однако» и др. Но союз «и» не всегда обозначает конъюнктивную связь предложений. Рассмотрим два высказывания: «7и13 – взаимно простые числа». Здесь первое предложение – сокращенная запись конъюнкции «7 – простое число и 13 – простое число». Второе предложение – элементарное, которое выражает отношение между двумя числами 7 и 13, состоящее в том, что у них нет общего делителя, отличного от единицы. Значит, во втором предложении союз «и» связывает не два суждения, а два предмета, которые находятся в определенном соотношении. Логический союз «и» отличается от грамматического союза «и» еще и тем, что грамматическим союзом «и» соединяют суждения, имеющие между собой что-нибудь общее по содержанию, а логический союз «и» может соединять любые суждения. Например, суждение «Т.Г. Шевченко – поэт и число 3201 делится на 3» в логике являются истинными, так как единственным условием для того, чтобы конъюнктивное суждение было истинным, является истинность его составных суждений.

ДИЗЪЮНКЦИЕЙ (или логической суммой) двух высказываний А и В называется высказывание «А или В», которое истинно тогда, когда истинно хотя бы одно из высказываний. Обозначают: А V В, А + В. Читают: «А или В». Слово дизъюнкция произошло от латинского слова «disjunctio» — разделение.

Таблица истинности для дизъюнкции имеет вид:

Дизъюнкция А VВ = будет истинной, если на первом уроке будет литература (вторая строка таблицы истинности) или математика (третья строка таблицы истинности), и ложной, если на первом уроке будет любой другой предмет или если урока вообще не будет (четвертая строка таблицы истинности).

Согласно Единой спортивной квалификации и высказывание А, и высказывание В истинны, следовательно, и дизъюнкция их истинна (1-я строка таблицы истинности).

Как видно из приведенных примеров, для образования дизъюнкции используется союз «или». В обычной речи этот союз чаще всего имеет разделительный смысл (как в примере 1: либо математика, либо литература), но не всегда. В примере 2 союз «или» лишен разделительного оттенка: шахматист одновременно может набрать 11,5 очка и занять 1-е место.

В математике союз «или» всегда понимается в широком смысле.

Задания для самостоятельной работы по теме:

Определите значение истинности следующих высказываний:

а) «Париж расположен на Сене и 2+3=4»;

б) «Число 4 – простое и это число четное»;

в) «Днепропетровск – столица Украины и Миссисипи протекает в Австралии»;

2. Составьте 2-4 сложных высказывания на конъюнкцию, определите их истинность.

3. Определите значение истинности высказываний А,В, если:

б) «В ∧ (2 + 2 = 4)» — ложно.

4. Сформулируйте и запишите в виде конъюнкции условие истинности каждого предложения

(а, в ϵ R ): а) а×в≠0; б) а÷в=0; в) а 2 + в 2 = 0;

Определите значение истинности следующих высказываний:

а) «Число 4 простое или это число четное»;

б) «2 + 2 = 4 или белые медведи живут в Африке»;

в) «2 + 2 = 5 или Днепр впадает в белое море»;

г) «2 + 2 = 4 или Днепр впадает в Черное море».

5. Составьте 2-4 сложных высказывания на дизъюнкцию, определите их истинность.

6. Определите значение истинности высказываний С и D, если:

а) «С V (2 + 2 = 5)» — истинно;

б) «D V (2 + 2 = 5)» — ложно.

7. Сформулируйте и запишите в виде дизъюнкции условие истинности каждого предложения (а, в ϵ R ):а) а × в = 0, б) >2.

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Преобразование логических выражений

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 20. Преобразование логических выражений

Способ определения истинности логического выражения путём построения его таблицы истинности становится неудобным при увеличении количества логических переменных, т. к. за счёт существенного увеличения числа строк таблицы становятся громоздкими. В таких случаях выполняются преобразования логических выражений в равносильные. Для этого используют свойства логических операций, которые иначе называют законами алгебры логики.

20.1. Основные законы алгебры логики.

Приведём основные законы алгебры логики.

1. Переместительные (коммутативные) законы:

2. Сочетательные (ассоциативные) законы:

(A v В) v С = A v (В v С).

3. Распределительные (дистрибутивные) законы:

A v (В & С) = (A v В) & (A v С).

4. Законы идемпотентности (отсутствия степеней и коэффициентов):

5. Закон противоречия:

6. Закон исключённого третьего:

7. Закон двойного отрицания:

8. Законы работы с константами:

A v 1 = 1; A v O = A;

9. Законы де Моргана:

10. Законы поглощения:

Справедливость законов можно доказать построением таблиц истинности.

Пример 1. Упростим логическое выражение

Последовательно применим дистрибутивный закон и закон исключённого третьего:

Пример 2. Упростим логическое выражение

Аналогичные законы выполняются для операций объединения, пересечения и дополнения множеств. Например:

Пробуйте самостоятельно доказать один из этих законов с помощью кругов Эйлера.

Пример 3. На числовой прямой даны отрезки В = [2; 12] и С = [7; 18]. Каким должен быть отрезок А, чтобы предикат

становился истинным высказыванием при любых значениях х.

Преобразуем исходное выражение, избавившись от импликации:

причём это минимально возможное множество А.

Множество В — это отрезок [2; 12].

Изобразим это графически:

Пересечением этих множеств будет служить промежуток [2; 7[. В качестве ответа мы можем взять этот промежуток, а также любой другой, его включающий.

Чему равна минимальная длина отрезка А? Укажите ещё несколько вариантов множества А.

Пример 4. Для какого наименьшего неотрицательного целого десятичного числа а выражение

тождественно истинно (т. е. принимает значение 1 при любом неотрицательном целом значении десятичной переменной х)? Здесь & — поразрядная конъюнкция двух неотрицательных целых десятичных чисел.

Прежде всего, вспомним, что представляет собой поразрядная конъюнкция двух целых десятичных чисел, например 27 и 22.

Обратите внимание на то, что если в некотором бите хотя бы одного сомножителя есть 0, то 0 есть и в этом бите результата, а 1 в результате получается только тогда, когда в соответствующих битах каждого сомножителя есть 1.

Перепишем исходное выражение в наших обозначениях:

Рассмотрим предикат М(х) = (х & 28 ? 0). В числе 28 = 111002 4-й, 3-й и 2-й биты содержат единицы, а 1-й и 0-й — нули. Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 4, 3 или 2 содержит единицу. Если и 4-й, и 3-й, и 2-й биты числа х нулевые, то высказывание х & 28 ? 0 будет ложным.

Рассмотрим предикат N(x) = (х & 45 ? 0). В числе 45 = 1011012 5-й, 3-й, 2-й и 0-й биты содержат единицы, 4-й и 1-й — нули.

Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 5, 3, 2 или 0 содержит единицу. Если и 5-й, и 3-й, и 2-й, и 0-й биты числа х нулевые, то высказывание х & 45 ? 0 будет ложным.

Рассмотрим предикат К(х) = (х & 17 = 0). В числе 17 = 100012 3-й, 2-й и 1-й биты содержат нули, 4-й и 0-й — единицы. Побитовая конъюнкция 17 и х будет равна нулю, если в числе х 4-й и 0-й биты будут содержать нули. Множество истинности этого предиката — все х с нулями в 4-м и 0-м битах.

По условию задачи надо, чтобы

Запишем это выражение для рассмотренных множеств истинности:

Объединением множеств М и N являются все двоичные числа, у которых хотя бы один из битов с номерами 5, 4, 3, 2, 0 содержит единицу. Пересечением этого множества с множеством К будут все двоичные числа, у которых биты с номерами 4 и 0 будут заняты нулями, т. е. такие двоичные числа, у которых хотя бы один из битов с номерами 5, 3, 2 содержит 1. Все эти числа образуют множество А.

Искомое число а должно быть таким, чтобы при любом неотрицательном целом значении переменной х: х & а ? 0, и кроме того, оно должно быть минимальным из возможных. Этим условиям удовлетворяет число 1011002. Действительно, единицы в нём стоят в тех и только в тех битах, которые нужны для выполнения условия х & а ? 0.

Итак, требуемое число 1011002 или 4410.

Приведите пример такого десятичного числа а, что для него х & а ? 0 при любом неотрицательном целом значении десятичной переменной х, но само число а не является минимально возможным.

Пример 5. Выясним, сколько решений имеет следующая система из двух уравнений:

Конъюнкция истинна тогда и только тогда, когда истинны все образующие её высказывания. Следовательно, каждая из трёх входящих в конъюнкцию импликаций должна быть равна 1.

Начнем строить дерево решений, представив на нём значения переменных х1 и х2 при которых х1 ? х2 = 1.

Продолжим строить дерево решений. Значения переменной х3 будем выбирать такими, чтобы при имеющихся х2 импликация х2 ? х3 оставалась истинной.

То же самое проделаем для переменной х4.

На дереве видно, что рассматриваемое нами уравнение имеет 5 решений — 5 разных наборов значений логических переменных x1, х2, х3, х4, при которых выполняется равенство:

Следовательно, как и первое уравнение, это уравнение имеет 5 решений. Представим их в табличной форме:

Решение исходной системы логических уравнений — это множество различных наборов значений логических переменных х1, х2, х3, х4, у1, у2, у3, у4 таких, что при подстановке каждого из них в систему оба уравнения превращаются в истинные равенства.

Начнём строить такие наборы или двоичные цепочки. Их началом может служить любой из пяти наборов — решений первого уравнения, а концом — любой из пяти наборов — решений второго уравнения. Например, на основе одного из решений первого уравнения можно построить следующие пять решений системы:

Всего мы можем построить 5 • 5 = 25 решений системы.

Вспомните, как называется теорема комбинаторики, которую мы применили для подсчёта количества решений системы.

20.2. Логические функции

Значение любого логического выражения определяется значениями входящих в него логических переменных. Тем самым логическое выражение может рассматриваться как способ задания логической функции.

Совокупность значений п аргументов удобно интерпретировать как строку нулей и единиц длины n. Существует ровно 2 n различных двоичных строк длины n. Так как на каждой такой строке некая функция может принимать значение 0 или 1, общее количество различных булевых функций от n аргументов равно

Для n = 2 существует 16 различных логических функций.

Рассмотрим их подробнее.

С увеличением числа аргументов количество логических функций резко возрастает. Так, для трёх переменных существует 256 различных логических функций! Но изучать их все нет никакой необходимости. Дело в том, что путём преобразований функция любого количества переменных может быть выражена через функции только двух переменных. Более того, можно использовать не все, а лишь некоторые логические функции двух переменных. Например:

1) F2 и F11 (конъюнкция и отрицание второго аргумента);

2) F8 и F13 (дизъюнкция и отрицание первого аргумента);

3) F9 (стрелка Пирса, отрицание дизъюнкции);

4) F15 (штрих Шеффера, отрицание конъюнкции).

Два последних примера говорят о том, что при желании всю алгебру логики можно свести к одной функции! Но чаще всего логические функции записываются в виде логического выражения через отрицание, конъюнкцию и дизъюнкцию.

20.3. Составление логического выражения по таблице истинности и его упрощение

Ранее мы выяснили, что для любого логического выражения можно составить таблицу истинности. Справедливо и обратное: для всякой таблицы истинности можно составить соответствующее ей логическое выражение.

Алгоритм составления логического выражения по таблице истинности достаточно прост. Для этого надо:

1) отметить в таблице истинности наборы переменных, при которых значение логического выражения равно единице;
2) для каждого отмеченного набора записать конъюнкцию всех переменных следующим образом: если значение некоторой переменной в этом наборе равно 1, то в конъюнкцию включаем саму переменную, в противном случае — её отрицание;
3) все полученные конъюнкции связать операциями дизъюнкции.

Пример 6. Имеется следующая таблица истинности:

После выполнения двух первых шагов алгоритма получим:

После выполнения третьего шага получаем логическое выражение:

Попробуем упростить полученное логическое выражение. Прежде всего, вынесем за скобки В — общий сомножитель, имеющийся у всех трёх слагаемых, затем — сомножитель

, а далее используем законы алгебры логики.

САМОЕ ГЛАВНОЕ

Способ определения истинности логического выражения путём построения его таблицы истинности становится неудобным при увеличении количества логических переменных, т. к. за счёт существенного увеличения числа строк таблицы становятся громоздкими. В таких случаях выполняются преобразования логических выражений в равносильные. Для этого используют свойства логических операций, которые иначе называют законами алгебры логики. Аналогичные законы имеют место и в алгебре множеств.

Логическая функция может быть задана с помощью таблицы истинности или аналитически, т. е. с помощью логического выражения.

Для всякой таблицы истинности можно составить соответствующее ей логическое выражение.

Вопросы и задания

Известно, что выражение

истинно при любом значении переменной х. Определите наименьшее возможное количество элементов множества А.

истинно при любом значении переменной х.

Оглавление

§ 20. Преобразование логических выражений

Лекция 6. Высказывания и высказывательные формы (Математические предложения)

1. Высказывания и высказывательные формы (предикат)

2. Конъюнкция и дизъюнкция высказываний

3. Конъюнкция и дизъюнкция высказывательных форм

Математические предложения

Изучая реальные процессы, математика описывает их, используя как естественный словесный язык, так и свой символический. Описание строится при помощи предложений. Но чтобы математические знания правильно отражали окружающую нас реальность, эти предложения должны быть истинными.

Каждое математическое предложение характеризуется содержанием и логической формой (структурой), причем содержание неразрывно связано с формой, и нельзя осмыслить первое, не понимая второго.

  1. Высказывания и высказывательные формы

Относительно понятий и отношений между ними можно высказывать различные суждения. Языковой формой суждений являются повествовательные предложения. Например, в начальном курсе математики можно встретить такие предложения:

1) число 12 – четное;

4) В числе 15 один десяток и 5 единиц;

5) От перестановки множителей произведение не изменяется;

6) Некоторые числа делятся на 3.

Видим, что предложения, используя в математике, могут быть записаны как на естественном (русском) языке, так и на математическом, с использованием символов. Далее, о предложениях 1, 4, 5 и 6 можно сказать, что они несут верную информацию, а предложение 2 – ложную. Относительно предложения х + 5 = 8 вообще нельзя сказать: истинное оно или ложное. Взгляд на предложение с позиции – истину или ложь оно нам сообщает – привел к понятию высказывания.

Определение. Высказыванием в математике называют предложение, относительно которого имеет смысл вопрос: истинно оно или ложно.

Например, предложения 1, 2, 4, 5 и 6 – высказывания, причем предложения 1, 4, 5 и 6 – истинные, а 2 – ложное.

Высказывания принято обозначать прописными буквами латинского алфавита: А, В, С, …, Z. Если высказывание А истинно, то записывают: А – «и», если же высказывание А – ложно, то пишут: А – «л».

«Истина» и «ложь» называются значениями истинности высказывания. Каждое высказывание либо истинно, либо ложно, быть одновременно тем и другим оно не может.

Предложение х + 5 = 8 не является высказыванием, так как о нем нельзя сказать: истинно оно или ложно. Однако при подстановке конкретных значений переменной х оно обращается в высказывание: истинное или ложное. Предложение х + 5 = 8 называется высказывательной формой. Оно порождает множество высказываний одной и той же формы.

По числу переменных, входящих в высказывательную форму, различают одноместные, двухместные и т.д. высказывательные формы и обозначают: А(х), А(х, у) и т.д. Например, предложение «Прямая х параллельна прямой у» — двухместная.

Определение. Одноместной высказывательной формой, заданной на множестве Х, называется предложение с переменной, которое обращается в высказывание при подстановке в него значений переменной из множества Х.

Множество Х – множество, из которого выбираются значения переменной.

Среди всех возможных значений переменной нас в первую очередь интересуют те, которые обращают высказывательную форму в истинное высказывание. Множество таких значений переменных называют множеством истинности высказывательной формы. Например, множеством истинности высказывательной формы х > 5, заданной на множестве действительных чисел, будет промежуток (5; ∞). Множество истинности высказывательной формы х + 5 = 8, заданной на множестве целых неотрицательных чисел, состоит из одного числа 3.

Условимся обозначать множество истинности высказывательной формы буквой Т. Тогда, согласно определению, всегда Т⊂Х.

Предложения, которые мы рассматривали, были простыми, но можно привести примеры суждений, языковой формой которых будут сложные предложения. Например: «Если треугольник равнобедренный, то углы при основании в нем равны». Естественно возникает вопрос: как определить значение истинности таких высказываний и находить множество истинности таких высказывательных форм?

Чтобы ответить на эти вопросы, необходимо познакомиться с некоторыми логическими понятиями.

В логике считают, что из двух данных предложений можно образовать новые предложения, используя для этого союзы «и», «или», «если… , то», «тогда и только тогда, когда», а также частица «не» или словосочетание «неверно, что». Слова «и», «или», «если…, то», «тогда и только тогда, когда», а также частица «не» называют логическими связками. Предложения, образованные из других предложений с помощью логических связок, называют составными. Предложения, не являющиеся составными, называют элементарными.

Приведем примеры составных предложений.

1) Число 28 четное и делится на 7.

2) Число х меньше или равно 8.

3) Число 14 не делится на 4.

Эти предложения, являясь с логической точки зрения составными, по своей грамматической структуре – простые.

Как определить значение истинности составного высказывания, например, «число 28 делится на 7 и на 9»? Значение истинности высказываний определяется с помощью определенных правил. Но для этого нужно уметь выявлять логическую структуру высказывания.

Для этого нужно установить:

1) из каких элементарных предложений образовано данное составное предложение;

2) с помощью каких логических связок оно образовано.

  1. Конъюнкция и дизъюнкция высказываний

Определение.Конъюнкцией высказываний А и В называется высказывание А∧В, которое истинно, когда оба высказывания истинны, и ложно, когда хотя бы одно из высказываний ложно.

Обозначают А∧В (читают: «А и В»).

Определение конъюнкции можно записать с помощью таблицы, называемой таблицей истинности.

АВА∧В
иии
илл
лил
ллл

Используя данное определение, найдем значение истинности высказывания «число 28 делится на 7 и на 9», которое, как было установлено раньше, состоит из двух элементарных высказываний, соединенных союзом «и», т.е. является конъюнкцией.. Так как первое высказывание истинно, а второе ложно, то, согласно определению конъюнкции, высказывание «число 28 делится на 7 и на 9» будет ложным.

Определение. Дизъюнкцией высказываний А и В называется высказывание А∨В, которое истинно, когда истинно хотя бы одно из этих высказываний, и ложно, когда оба высказывания ложны.

Высказывание образовано с помощью союза «или»: А∨В (читают А или В).

Используя данное определение, найдем значение истинности высказывания «число 28 делится на 7 или на 9». Так как это предложение является дизъюнкцией двух высказываний, одно из которых истинно, то, согласно определению дизъюнкции, высказывание «число 28 делится на 7 и на 9» будет истинным.

В математике союз «или» используется как неразделительный.

Образование составного высказывания с помощью логической связки называется логической операцией.

Определения конъюнкции и дизъюнкции можно обобщить на t составляющих их высказываний.

Конъюнкцией t высказываний называется предложение вида А₁ ∧ А₂ ∧…∧ Аt, которое истинно тогда и только тогда, когда истинны все составляющие его высказывания

Дизъюнкцией t высказываний называется предложение вида А₁ ∨ А₂ ∨…∨ Аt, которое ложно тогда и только тогда, когда ложны все составляющие его высказывания

  1. Конъюнкция и дизъюнкция высказывательных форм

В математике рассматривают не только конъюнкцию и дизъюнкцию высказываний, но и выполняют соответствующие операции над высказывательными формами.

Конъюнкциюодноместных высказывательных форм А(х) и В(х), заданных на множестве Х, обозначают А(х) ∧ В(х). С появлением этого предложения возникает вопрос, как найти его множество истинности, зная множества истинности высказывательных форм А(х) и В(х). Другими словами, при каких значениях х из области определения Х высказывательная форма А(х) ∧ В(х) обращается в истинное высказывание? Очевидно, что это возможно при тех и только тех значениях х, при которых обращаются в истинное высказывание обе высказывательные формы А(х) и В(х). Если обозначить ТА – множество истинности предложения А(х), ТВ – множество истинности предложения В(х), а множество истинности их конъюнкции Т А∧В, то, по всей видимости, Т А∧В = ТА ∩ ТВ.

Докажем это равенство.

1. Пусть а – произвольный элемент множества Х и известно, что а ∈ Т А∧В. По определению множества истинности это означает, что высказывательная форма А(х) ∧ В(х) обращается в истинное высказывание при х = а, т.е. высказывание А(а) ∧ В(а) истинно. Так как данное высказывание конъюнкция, то получаем, что каждое из высказываний А(а) и В(а) также истинно. Это означает, что а ∈ Т А и а ∈ ТВ. Следовательно, по определению пересечения множеств, а ∈ ТА ∩ ТВ. Таким образом, мы показали, что Т А∧В ⊂ ТА ∩ ТВ.

2. Докажем обратное утверждение. Пусть а – произвольный элемент множества Х и известно, что а ∈ ТА ∩ ТВ. По определению пересечения множества это означает, что а ∈ Т А и а ∈ ТВ, откуда получаем, что А(а) и В(а) – истинные высказывания, поэтому конъюнкция высказываний А(а) ∧ В(а) также будет истинна. А это означает, что элемент а принадлежит множеству истинности высказывательной формы А(х) ∧ В(х), т.е.

а ∈ Т А∧В. Таким образом, мы доказали, что ТА ∩ ТВ ⊂ Т А∧В.

Из 1 и 2 в силу определения равных множеств вытекает справедливость равенства

Т А∧В = ТА ∩ ТВ, что и требовалось доказать.

Заметим, что полученное правило справедливо и для высказывательных форм, содержащих более одной переменной.

Дизъюнкцию одноместных высказывательных форм А(х) и В(х), заданных на множестве Х, обозначают А(х) ∨ В(х), Это предложение будет обращаться в истинное высказывание при тех и только тех значениях х из области определения Х, при которых обращается в истинное высказывание хотя бы одна из высказывательных форм, т.е.

Т А∨В = ТА ∪ ТВ. Доказательство этого равенства аналогично рассмотренному выше.

Приведем пример. Решим уравнение (х – 2) • (х + 5) = 0. Известно, что произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Это означает, что данное уравнение равносильно дизъюнкции: х – 2 = 0 ∨ х + 5 = 0 и поэтому множество его решений может быть найдено как объединение множеств решения первого и второго уравнений, т.е <2>∪ <-5>=<-5, 2>.

Заметим, что дизъюнкцию уравнений (неравенств) называют также совокупностью.

Рассматривая конъюнкцию и дизъюнкцию высказывательных форм, мы установили их тесную связь с пересечением и объединением множеств.

А∩В = <х\ х ∈А ∧ х∈В >, А∪В = <х\ х ∈А ∨ х∈В >, причем каждое свойство представляет собой высказывательную форму.

  1. Решение задач на распознавание объектов

С введением понятия конъюнкции и дизъюнкции высказывательных форм появились условия для рассмотрения вопросов, связанных с решением определенного вида задач, так называемых задач на распознавание объектов.

В задачах на распознавание объектов требуется ответить на вопрос: принадлежит тот или иной объект объему данного понятия или не принадлежит.

Пример 1. «Установите, какие из фигур являются квадратами, а какие нет».

Решают такие задачи, используя определение соответствующего понятия. При этом важно понимать, что если понятие а определено через родовое понятие с и видовое отличие Р, то его объем А можно представить в таком виде: А = <х\ х ∈С и Р(х) >Эта запись показывает, что характеристическое свойство элементов, принадлежащих объему понятия а, представляет собой конъюнкцию двух свойств:

1) принадлежности объекта х объему С родового понятия (х ∈С);

Пример 2. «Выяснить, в каком случае луч ВD является биссектрисой угла АВС».

Воспользуемся таким определением биссектрисы угла: «Биссектрисой угла называется луч, выходящий из вершины угла и делящий этот угол пополам». Из него следует, что для того, чтобы луч был биссектрисой угла, он должен обладать двумя свойствами: «выходить из вершины угла» и «делить этот угол пополам».

Луч ВD на рисунке а) не является биссектрисой угла АВС, поскольку он не делит данный угол пополам. Луч ВD на рисунке б) является биссектрисой угла АВС, поскольку он делит данный угол пополам и выходит из вершины угла.

Если видовое отличие представляет собой конъюнкцию свойств, т.е. Р = Р₁∧Р₂∧…∧Рn, то распознавание проводится по следующему правилу: проверяют поочередно наличие у объекта каждого из свойств Р₁, Р₂, …, Рn; если окажется, что он не обладает каким-либо из этих свойств, то проверку прекращают и делают вывод о том, что объект не обладает свойством Р; если же окажется, что все свойства Р₁, Р₂, …, Рn присущи данному объекту, то заключают, что объект обладает свойством Р.

Если видовое отличие представляет собой дизъюнкцию свойств, т.е. Р = Р₁∨Р₂∨…∨Рn, то распознавание проводится по следующему правилу: проверка проводится до тех пор, пока не будет установлено, что хотя бы одно из свойств присуще данному объекту, на основании чего заключают, что объект обладает свойством Р. Если окажется, что он не обладает ни одним из свойств Р₁, Р₂, …, Рn, то проверку прекращают и делают вывод о том, что объект не обладает свойством Р.


источники:

http://murnik.ru/preobrazovanie-logicheskih-vyrazhenij

http://zdamsam.ru/a63567.html