Корень характеристического уравнения для цепи

Портал ТОЭ

6.2 Классический метод расчёта переходных процессов

Анализ переходного процесса в линейной цепи с сосредоточенными параметрами R , L , C (рис. 6.2 ) сводится к решению линейных неоднородных уравнений, выражающих законы Кирхгофа.

где i ( t ) – переходный ток.

Дифференцированием приводим это уравнение к неоднородному дифференциальному уравнению 2-го порядка:

Порядок дифференциального уравнения определяется числом накопителей энергии в цепи.

Решение дифференциального уравнения:

где i пр ( t ) – частное решение неоднородного уравнения, принуждённая составляющая, ток в установившемся режиме, когда переходный процесс закончен (при t = ∞ );
i св ( t ) – общее решение однородного уравнения, свободная составляющая, ток во время переходного процесса, возникающий вследствие изменения электрических и магнитных полей.

Таким образом здесь используется метод наложения. Физически существует только i ( t ) , а разложение его на i пр и i св является математическим приёмом, облегчающим расчёт переходного процесса.

Расчёт принуждённой составляющей сводится к расчёту по известным методам установившегося значения искомой величины в схеме после коммутации.

Для расчёта свободной составляющей следует найти корни характеристического уравнения p k и n постоянных интегрирования A k .

Если характеристическое уравнение

имеет n различных корней p k ( k = 1 , 2 , … ,n ) , то

Корню p k кратности m k ≥ 1 соответствует слагаемое свободной составляющей вида

Чтобы определить постоянные интегрирования A k , необходимо знать значения искомой величины и всех её производных до ( n − 1) порядка включительно в момент времени t = 0+ . Для их определения используются законы коммутации.

Составление характеристического уравнения

    Составляем уравнение электрического состояния цепи для свободного режима (т.е. при устранении вынужденной (принуждающей) силы). Это соответствует схеме с исключёнными источниками – источники ЭДС закорачиваются, ветви с источниками тока размыкаются.

Например для рис. 6.3 :

  • Характеристическое уравнение получается приравниванием нулю определителя контурной ℤ (K) ( p ) или узловой Y (У) ( p ) матрицы. При составлении этих матриц сопротивление индуктивности (ёмкости) считают равным pL m (1 ∕pC m ) :
  • Характеристическое уравнение получается при Z вх ( p ) = 0 ,Y вх ( p ) = 0 ,
    где Z вх ( p ) – входное сопротивление схемы относительно двух зажимов, получающихся в результате размыкания любой ветви схемы;
    Y вх ( p ) – входная проводимость схемы относительно произвольной пары узлов схемы.
  • Корни характеристического уравнения – собственные частоты цепи, т.к. они определяют характер свободных процессов.

    Степень характеристического уравнения может быть определена по электрической схеме без составления уравнения: она равна числу основных независимых начальных условий в послекоммутационной схеме после максимального её упрощения и не зависит от числа ЭДС в схеме.

    Упрощение заключается в том, что последовательно и параллельно соединённые реактивные элементы должны быть заменены эквивалентными.

    Рассмотрим схему на рис. 6.4 . Три реактивных элемента в упрощённой схеме определяют три независимых начальных условия, т.е. порядок характеристического уравнения равен трём.

    Свободный процесс происходит в цепи, освобождённой от источников энергии, поэтому свободные токи не могут протекать сколь угодно долго в цепи, где есть активные элементы. Свободные токи должны затухать, в связи с этим действительные части корней p k характеристического уравнения должны быть отрицательными.

      Так, при наличии одного корня p = − a

    Корень характеристического уравнения для цепи

    3.3 Переходные процессы в цепях второго порядка

    Цепи второго порядка содержат два реактивных элемента; это могут быть две индуктивности, две емкости или емкость с индуктивностью. Кроме того, цепь включает некоторое количество резистивных элементов и независимых источников энергии, которые для простоты анализа будем считать стационарными. В зависимости от наличия тех или иных реактивных элементов, решение задачи следует искать или для переменной состояния i L ( t) , или для u C ( t). Форма записи решения определена общей теорией:

    где p1 и p2 — корни характеристического уравнения.

    Поиск решения выполняется в той же последовательности, что и для цепей первого порядка:

    1. Находят корни характеристического уравнения. Они могут быть вещественными разными и отрицательными или вещественными кратными и отрицательными или комплексно-сопряженными с отрицательной вещественной частью;

    2. Из анализа цепи после коммутации определяют принужденную составляющую режима или , что можно сделать, если в цепи продолжают действовать стационарные источники питания;

    3. Исследуя основные и неосновные начальные условия, находят постоянные интегрирования , или , .

    Рассмотрим подробнее каждый шаг решения.

    1. Определение корней характеристического уравнения.

    Характеристическое уравнение может быть получено классическим методом путем составления системы уравнений по законам Кирхгофа с последующим сведением этой системы к одному дифференциальному уравнению второго порядка. Этот способ подробно описан в учебной литературе и здесь не рассматривается. Как показывают примеры, рассмотренные ранее, этот путь сопровождается достаточно громоздкими преобразованиями.

    Было замечено, что характеристическое уравнение содержится внутри

    функции входного сопротивления как некоторый инвариант, присущий данной цепи. Рассмотрим этот способ получения характеристического уравнения путем исследования входного сопротивления на примере цепи, представленной на рис.3.13а. Будем считать, что цепь питается от источника постоянного тока и содержит два резистивных сопротивления, индуктивность и емкость. После коммутации ( t>0) (ключ S замыкается) переходный процесс в цепи, изображенной на рис.3.13б, развивается за счет независимого источника тока, а также за счет энергии, запасенной в реактивных элементах цепи. Свободная составляющая режима, определяемая корнями характеристического уравнения, не зависит от внешнего источника питания, а определяется только параметрами элементов ветвей и способом их соединения. Точно так же не зависит от внешних источников питания и функция входного сопротивления [1]. Поэтому возникает идея поискать корни характеристического уравнения внутри функции входного сопротивления.

    На рис.3.13в и рис.3.13г представлены комплексные схемы замещения цепи, которые следует составить для определения входного сопротивления со стороны

    первой и третьей ветви, где .

    Рис. 3.13. Схема RLC -цепи второго порядка:

    а) исходная цепь

    б) схема после коммутации

    в) входное сопротивление со стороны третьей ветви

    г) входное сопротивление со стороны первой ветви

    Объединяя параллельно и последовательно соединенные ветви, найдем входные сопротивления со стороны обозначенных зажимов

    Числители полученных выражений совпадают, а знаменатели различны. Аналогичный результат получим, если найдем входное сопротивление со стороны второй ветви. Следовательно, числитель входного сопротивления со стороны любой ветви является некоторым расчетным инвариантом, определяемым топологией цепи. Числитель этого инварианта при замене комплексной переменной jω на p совпадает с характеристическим полиномом. Используя эту замену и, приравнивая числитель к нулю, получим характеристическое уравнение:

    После замены в числителе переменной jω на p и деления на коэффициент при старшем члене получим уравнение второй степенин.Найдем корни этого уравнения

    На основании этого анализа сформулируем порядок получения характеристического уравнения цепи:

    а. Для времени t>0 следует изобразить комплексную расчетную цепь;

    б. Исключить из схемы все независимые источники энергии: источники тока разомкнуть, источники напряжения замкнуть накоротко. Найти входное сопротивление со стороны любой ветви и записать это выражение в виде дробно-рациональной функции, где в числителе и в знаменателе образуются полиномы по степеням jω

    в. Числитель полученного выражения, совпадающий с характеристи-ческим полиномом, приравнять к нулю, предварительно заменив переменную jω на p. Найти корни характеристического уравнения и записать решение для искомой переменной состояния в виде (3.17) или (3.18).

    Рис. 3.14. Схема для определения принужденных составляющих режима

    2. Определение принужденной составляющей режима при стационарном воздействии находят для момента времени t = ∞, когда переходный процесс в цепи уже закончен. Для рассматриваемого в примере режима постоянного тока исследуемая схема приведена на рис.3.14, где индуктивность заменена короткозамкнутой перемычкой, а емкость разрывом. Используя правило деления тока на части, найдем

    3. Постоянные интегрирования A1 и A2 (или B1 и B2) можно найти на основании основных и неосновных начальных условий. Основные начальные условия определяются законами коммутации по схеме докоммутационного состояния цепи. Для рассматриваемого примера такая схема приведена на рис.3.15а, из анализа которой следует

    что дает одно уравнение для определения постоянных интегрирования:

    №59 Методы составления характеристического уравнения.

    Свободный режим схемы не зависит от источников энергии, определяется только структурой схемы и параметрами ее элементов. Из этого следует, что корни характеристического уравнения p1, p2,…, pn будут одинаковыми для всех переменных функций (токов и напряжений).

    Характеристическое уравнение можно составить различными методами. Первый метод – классический, когда характеристическое уравнение составляется строго в соответствии с дифференциальным по классической схеме. При расчете переходных процессов в сложной схеме составляется система из “m” дифференциальных уравнений по законам Кирхгофа для схемы цепи после коммутации. Так как корни характеристического уравнения являются общими для всех переменных, то решение системы дифференциальных уравнений выполняется относительно любой переменной (по выбору). В результате решения получают неоднородное дифференциальное уравнение с одной переменной. Составляют характеристическое уравнение в соответствии с полученным дифференциальным и определяют его корни.

    Пример. Составить характеристическое уравнение и определить его корни для переменных в схеме рис. 59.1. Параметры элементов заданы в общем виде.

    Система дифференциальных уравнений по законам Кирхгофа:

    Решим систему уравнений относительно переменной i3, в результате получим неоднородное дифференциальное уравнение:

    Характеристическое уравнение и его корень:

    Второй способ составления характеристического уравнения заключается в приравнивании нулю главного определителя системы уравнений Кирхгофа для свободных составляющих переменных.

    Пусть свободная составляющая произвольного тока имеет вид iксв=Аkept, тогда:

    Система уравнений для свободных составляющих получается из системы дифференциальных уравнений Кирхгофа путем замены производных от переменных на множитель р, а интегралов – на 1/р. Для рассматриваемого примера система уравнений для свободных составляющих имеет вид:

    Характеристическое уравнение и его корень:

    Третий способ составления характеристического уравнения (инженерный) заключается в приравнивании нулю входного операторного сопротивления схемы относительно любой ее ветви.

    Операторное сопротивление элемента получается из его комплексного сопротивления путем простой замены множителя jω на р, следовательно

    Для рассматриваемого примера:

    Третий способ является наиболее простым и экономичным, поэтому он чаще других применяется при расчете переходных процессов в электрических цепях.

    Корни характеристического уравнения характеризуют свободный переходной процесс в схеме без источников энергии. Такой процесс протекает с потерями энергии и поэтому затухает во времени. Из этого следует, что корни характеристического уравнения должны быть отрицательными или иметь отрицательную вещественную часть.

    В общем случае порядок дифференциального уравнения, которым описывается переходный процесс в схеме, и, следовательно, степень характеристического уравнения и число его корней равны числу независимых начальных условий, или числу независимых накопителей энергии (катушек L и конденсаторов C). Если в схеме цепи содержатся параллельно включенные конденсаторы С1, С2,… или последовательно включенные катушки L1, L2,…, то при расчете переходных процессов они должны быть заменены одним эквивалентным элемен¬том СЭ =С1 +С2+… или LЭ =L1 +L2+…

    Таким образом, общий вид решения для любой переменной при расчете переходного процесса может быть составлен только из анализа схемы цепи, без составления и решения системы дифференциальных уравнений.


    источники:

    http://ets.ifmo.ru/osipov/os1/3_3

    http://toehelp.com.ua/lectures/059.html