Корень из 216 в 3 степени решение уравнения

Калькулятор корней

В поле степени можно вводить только натуральные числа 1,2,3,4 и.т.д.

В поле числа можно вводить положительные и отрицательные десятичные дроби(0.25, 0.5), обыкновенные дроби(1/2, 5/9), смешанные числа(1 2/8, 5 7/8 — целая часть отделяется пробелом)

Теория

Корнем n-ой степени из числа a называется такое число b n-ая степень которого равна a .

Если степень корня чётное натуральное число то a > 0.

Если степень нечётное натуральное число то a любое.

Свойства корня

Чётная и нечётная степень корня

При извлечении корня чётной степени из положительного числа всегда будет 2 числа

Корня чётной степени из отрицательного числа не существует в области вещественных чисел. Нет такого числа при возведении которого в чётную степень получалось бы отрицательное число.

При извлечении корня нечётной степени из положительного числа всегда будет положительное число

При извлечении корня нечётной степени из отрицательного числа всегда будет отрицательное число

x^3=216 (уравнение)

Найду корень уравнения: x^3=216

Решение

Дано уравнение
$$x^ <3>= 216$$
Т.к. степень в ур-нии равна = 3 — не содержит чётного числа в числителе, то
ур-ние будет иметь один действительный корень.
Извлечём корень 3-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[3]> = \sqrt[3]<216>$$
или
$$x = 6$$
Получим ответ: x = 6

Остальные 2 корня(ей) являются комплексными.
сделаем замену:
$$z = x$$
тогда ур-ние будет таким:
$$z^ <3>= 216$$
Любое комплексное число можно представить так:
$$z = r e^$$
подставляем в уравнение
$$r^ <3>e^ <3 i p>= 216$$
где
$$r = 6$$
— модуль комплексного числа
Подставляем r:
$$e^ <3 i p>= 1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin <\left(3 p \right)>+ \cos <\left(3 p \right)>= 1$$
значит
$$\cos <\left(3 p \right)>= 1$$
и
$$\sin <\left(3 p \right)>= 0$$
тогда
$$p = \frac<2 \pi N><3>$$
где N=0,1,2,3.
Перебирая значения N и подставив p в формулу для z
Значит, решением будет для z:
$$z_ <1>= 6$$
$$z_ <2>= -3 — 3 \sqrt <3>i$$
$$z_ <3>= -3 + 3 \sqrt <3>i$$
делаем обратную замену
$$z = x$$
$$x = z$$

Тогда, окончательный ответ:
$$x_ <1>= 6$$
$$x_ <2>= -3 — 3 \sqrt <3>i$$
$$x_ <3>= -3 + 3 \sqrt <3>i$$

Иррациональные уравнения с кубическими радикалами

Разделы: Математика

Тема: «Иррациональные уравнения вида ,

(Методическая разработка.)

Основные понятия

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

Основные свойства радикалов:

  • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
  • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

Методы решения иррациональных уравнений

Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

Основными методами решения иррациональных уравнений являются:

а) метод возведения обеих частей уравнения в одну и ту же степень;

б) метод введения новых переменных (метод замен);

в) искусственные приемы решения иррациональных уравнений.

В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

1 метод. Возведение в куб.

Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

Пример 1. Решить уравнение

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению ,

,

,

Пример 2. Решить уравнение .

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению

,

,

,

и рассмотрим полученное уравнение как квадратное относительно одного из корней

,

,

следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

Проверка:

Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

2 метод. Возведение в куб по формуле.

По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

,

(незначительная модификация известной формулы), тогда

Пример3. Решить уравнение .

Возведём уравнение в куб с использованием формул, приведённых выше.

,

Но выражение должно быть равно правой части. Поэтому имеем:

, откуда

.

Теперь при возведении в куб получаем обычное квадратное уравнение:

, и два его корня

,

Оба значения, как показывает проверка, правильные.

Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

Пример4. Решить уравнение .

Возводя, как и ранее, обе части в третью степень, имеем:

.

Откуда (учитывая, что выражение в скобках равно ), получаем:

, значит

. Получаем, .Сделаем проверку и убедимся х=0 –посторонний корень.

Ответ: .

Ответим на вопрос: «Почему возникли посторонние корни?»

Равенство влечёт равенство . Заменим с на –с, получим:

и .

Нетрудно проверить тождество

,

Итак, если , то либо , либо . Уравнение можно представить в виде , .

Заменяя с на –с, получаем: если , то либо , либо

Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

3 метод. Метод системы.

Пример 5. Решить уравнение .

Введём замену, составим и решим систему уравнений.

Пусть , . Тогда:

откуда очевидно, что

Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

Легко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.

Ответ: Корней нет.

Пример 6. Решить уравнение .

Введём замену, составим и решим систему уравнений.

Пусть , . Тогда

или

Возвращаясь к исходной переменной имеем:

х=0.

4 метод. Использование монотонности функций.

Прежде чем использовать данный метод обратимся к теории.

Нам понадобятся следующие свойства:

  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
  • Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
  • Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
  • Функция вида возрастает при к>0 и убывает при к 30.05.2009


источники:

http://www.kontrolnaya-rabota.ru/s/equal-one/any-uravnenie/expr/c6a0d3f12af494c74f29d659b9e46715/

http://urok.1sept.ru/articles/532757