Корень из двух частей уравнения

Основные методы решения уравнений

Что такое решение уравнения?

Тождественное преобразование. Основные

виды тождественных преобразований.

Посторонний корень. Потеря корня.

Решение уравнения – это процесс, состоящий в основном в замене заданного уравнения другим уравнением, ему равносильным . Такая замена называется тождественным преобразованием . Основные тождественные преобразования следующие:

Замена одного выражения другим, тождественно равным ему. Например, уравнение ( 3x+ 2 ) 2 = 15x+10 можно заменить следующим равносильным: 9 x 2 + 12x + 4 = 15x + 10 .

Перенос членов уравнения из одной стороны в другую с обратными знаками. Так, в предыдущем уравнении мы можем перенести все его члены из правой части в левую со знаком « – »: 9 x 2 + 12x + 4 15x – 10 = 0, после чего полу чим: 9 x 2 3x – 6 = 0 .

Умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля. Это очень важно, так как новое уравнение может не быть равносильным предыдущему, если выражение, на которое мы умножаем или делим, может быть равно нулю.

П р и м е р . Уравнение x – 1 = 0 имеет единственный корень x = 1.

Умножив обе его части на x – 3 , мы получим уравнение

( x – 1 )( x – 3 ) = 0, у которого два корня: x = 1 и x = 3.

Последнее значение не является корнем заданного уравнения

x – 1 = 0. Это так называемый посторонний корень.

И наоборот, деление может привести к потере корня. Так

в нашем случае, если ( x – 1 )( x – 3 ) = 0 является исходным

уравнением, то корень x = 3 будет потерян при делении

обеих частей уравнения на x – 3 .

В последнем уравнении (п.2) мы можем разделить все его члены на 3 (не ноль!) и окончательно получим:

Это уравнение равносильно исходному:

( 3x+ 2 ) 2 = 15x + 10 . 4.

Можно возвести обе части уравнения в нечётную степень или извлечь и з обеих частей уравнения корень нечётной степени . Необходимо помнить, что:

а) возведение в чётную степень может привести к приобретению посторонних корней ;

б) неправильное извлечение корня чётной степени может привести к потере корней.

П р и м е р ы . Уравнение 7 x = 35 имеет единственный корень x = 5 .

Возведя обе части этого уравнения в квадрат, получим

имеющее два корня: x = 5 и x = 5. Последнее значение

является посторонним корнем.

Неправильное извлечение квадратного корня из обеих

частей уравнения 49 x 2 = 1225 даёт в результате 7 x = 35,

и мы теряем корень x = 5.

Правильное извлечение квадратного корня приводит к

уравнению: | 7 x | = 35, а следовательно, к двум случаям:

1) 7 x = 35, тогда x = 5 ; 2) 7 x = 35, тогда x = 5 .

Следовательно, при правильном извлечении квадратного

корня мы не теряем корней уравнения.

Что значит правильно извлечь корень? Здесь мы встречаемся

с очень важным понятием арифметического корня

Copyright © 2004 — 2012 Др. Юрий Беренгард. All rights reserved.

Корень из двух частей уравнения

Равносильными уравнениями называются такие уравнения, которые имеют одни и те же корни, например уравнения х 2 = 3х — 2 и x 2 +2 = 3x равносильны (оба имеют корни х = 1 и х = 2).

Процесс решения уравнений заключается в основном в замене данного уравнения другим, ему равносильным.

Основные приемы, применяемые при решении уравнения, таковы.

1. Замена одного выражения другим, тождественно ему равным. Например, уравнение (x + 1) 2 = 2x + 5
можно заменить равносильным уравнением
x 2 + 2x + 1 = 2x + 5

2. Перенос слагаемых из одной части уравнения в другую с переменой знака на обратный; например, в уравнении х 2 + 2х + 1 = 2х + 5 можно перенести все члены в левую часть, причем члены + 2х и +5 из правой части в левую перейдут со знаком минус. Уравнение х 2 + 2x + 1 — 2x – 5 =0 или, что то же, х 2 — 4 = 0, равносильно исходному.

3. Умножение или деление обеих частей равенства на одно и то же выражение. При этом нужно иметь в виду, что новое уравнение может не быть равносильным предыдущему, если выражение, на которое мы умножаем или делим может быть равным нулю.

Пример. Дано уравнение (х — 1) (х + 2) = 4(x — 1). Разделив обе его части на х — 1, получаем х + 2 = 4. Это уравнение имеет единственный корень х = 2. Исходное же уравнение кроме корня х = 2 имеет еще корень х = 1. При делении на х — 1 этот корень «потерялся». Наоборот, при умножении обеих частей уравнения x + 2 = 4 сверх корня х = +2 появляется новый корень х = 1.

Из этого отнюдь не следует, что не нужно умножать или делить обеих частей уравнения на выражение, могущее равняться нулю. Нужно только каждый раз, когда такое действие производится, учесть, не пропадут ли при этом какие-нибудь старые корни и не появятся ли какие-нибудь новые.

4. Можно также возводить обе части уравнения в одну и ту же степень или извлекать из обеих частей корни одной и той же степени; однако при этом также могут получаться уравнения, не равносильные исходным. Например, уравнение 2х = 6 имеет один корень х = 3; уравнение же (2x 2 ) 2 = 6 2 , т. е. 4x 2 = 36, имеет два корня:
х = 3 и х = — 3.

Перед тем как выполнить преобразование уравнения, нужно посмотреть, не могут ли при этом пропасть некоторые старые его корни или появиться новые. Особенно важно установить, не пропадают ли старые корни; появление новых не так опасно, ибо всегда можно, получив некоторый корень, подставить его, в исходное уравнение и непосредственно, проверить, удовлетворяется ли оно.

Корень из двух частей уравнения

Решите уравнение методом возведения обеих частей в одну и ту же степень.

Нам нужно решить иррациональное уравнение (см. что такое иррациональное уравнение). Метод решения нам указан. Общая схема действий по указанному методу возведения обеих частей уравнения в одну и ту же степень выглядит так:

  • Осуществляется переход к уравнению, которое проще исходного в том смысле, что его проще решить. Для этого столько раз, сколько необходимо, последовательно выполняются следующие действия:
    • Уединяется радикал.
    • Выполняется возведение обеих частей уравнения в одну и ту же степень.
    • Упрощается полученное уравнение.
  • Дальше решается полученное уравнение.
  • Если на первом этапе проводилось возведение обеих частей в четную степень, то выполняется проверка для отсеивания посторонних корней.

Пройдем первый этап. Для этого выполним тройку действий — уединение радикала, возведение в степень, упрощение – первый раз.

Уединять радикал нам не нужно, так как в заданном уравнении радикал уже уединен (в левой части уравнения стоит только корень). Переходим к возведению в степень обеих частей уравнения.

Возводим обе части уравнения в квадрат (степени корней равны двум, поэтому для дальнейшего освобождения от корней возводим именно в квадрат), имеем .

Теперь упрощаем вид полученного уравнения, осуществляя преобразования уравнений. Первым преобразованием будет замена выражений в левой и правой части тождественно равными им выражениями. Из определения корня следует, что выражение в левой части тождественно равно 9−x 2 , а выражение в правой части тождественно равно x+9 . Учитывая это, переходим к уравнению 9−x 2 =x+9 . И еще упростим его вид:
9−x 2 −(x+9)=0 ,
9−x 2 −x−9=0 ,
−x 2 −x=0 ,
x 2 +x=0 .

В последующих прохождениях тройки действий – уединение радикала, возведение в степень, упрощение – нет необходимости, так как мы уже получили довольно простое для решения уравнение, и на этом первый этап можно считать завершенным.

Переходим ко второму этапу метода возведения обеих частей иррационального уравнения в одну и ту же степень – к решению полученного уравнения. Для нахождения корней уравнения x 2 +x=0 , а это неполное квадратное уравнение, представляем его левую часть в виде произведения, то есть, переходим к уравнению x·(x+1)=0 , откуда видим, что x=0 или x+1=0 , откуда x1=0 , x2=−1 . Итак, уравнение, полученное на первом этапе, решено, оно имеет два корня x1=0 , x2=−1 . На этом второй этап завершен, переходим к последнему – третьему этапу.

Третий этап – это отсеивание посторонних корней. В нашем случае – это обязательное мероприятие. Действительно, мы прибегали к возведению обеих частей уравнения в одну и ту же четную степень, а, как известно, это преобразование приводит к уравнению-следствию. Более того, при переходе от уравнения к уравнению 9−x 2 −(x+9)=0 расширилась ОДЗ, что также могло привести к появлению посторонних корней. Итак, нам нужно отсеять посторонние корни. Сделаем это через проверку подстановкой, то есть, подставим найденные корни x1=0 , x2=−1 в исходное уравнение и посмотрим, дает ли это верные числовые равенства:

Таким образом, иррациональное уравнение имеет два корня 0 и −1 .

Приведем компактную запись решения:


источники:

http://www.maths.yfa1.ru/algebra.php?id=18

http://www.cleverstudents.ru/equations/irrational_equations_example_016.html