Корень n степени и его свойства уравнение

Корень n-ой степени

Определение корня n-й степени из действительного числа

Корнем n-й степени (\(n=2, 3, 4, 5, 6… \)) некоторого числа \(a\) называют такое неотрицательное число \(b\), которое при возведении в степень \(n\) дает \(a\):

Число \(n\) при этом называют показателем корня.

Если \(n=2\), то перед вами корень 2-й степени или обычный квадратный корень.

Если \(n=3\), то корень 3-й степени и т.д.

Операция извлечения корня n-й степени является обратной к операции возведения в n-ю степень.

Кубический корень из числа 27 равняется 3. Действительно, если число 3 возвести в 3-ю степень, то мы получим 27.

Корень 4-й степени из 16-и равен 2. Двойка в 4-й степени равна 16.

Если извлечь корень n-й степени из 0, всегда будет 0.

Мы не можем в уме подобрать такое число, которое при возведении в 3-ю степень даст 19. Если посчитать на калькуляторе, то получим \(2,668…\) – иррациональное число с бесконечным количеством знаков после запятой.

Обычно, в математике, когда у вас получается иррациональное число, корень не считают и оставляют так как есть \(\sqrt[3]<19>\).

Что же делать, если под рукой нет калькулятора, а нужно оценить, чему равен такой корень. В этом случае нужно подобрать справа и слева такие ближайшие числа, корень из которых посчитать можно:

$$ \sqrt[3] <8>\le \sqrt[3] <19>\le \sqrt[3] <27>$$ $$ 2 \le \sqrt[3] <19>\le 3 $$

Получается, что наш корень лежит между числами 2 и 3.

Корень четной и нечетной степени

Надо четко различать правила работы четными и нечетными степенями. Дело в том, что корень четной степени можно взять только из положительного числа. Из отрицательных чисел корень четной степени не существует.

Корень нечетной степени можно посчитать из любых действительных чисел. Иногда в школьной программе встречаются задания, в которых требуется определить имеет ли смысл выражение:

Данное выражение имеет смысл, так как корень нечетной степени можно посчитать из любого числа, даже отрицательного.

Так как корень четной степени, а под корнем стоит отрицательное число, то выражение не имеет смысла.

Свойства корня n-й степени

Пусть есть два неотрицательных числа a и b, для них будут выполняться следующие свойства:

Корни нужны для точных и сокращенных подсчетов в математике. Это необходимая функция, без которой представить современную математику невозможно. Корень n-ой степени обозначается при помощи всем известного значка радикала. Даже самый простой корень из двух будет равен длинному набору чисел, округлив который вы получите лишь приблизительное значение. Такие числа называются иррациональными и намного лучше представить их в виде радикала.

Основные ограничения и свойства

  • Корень четной степени существует только из положительных чисел. Число, возводимое в четную степень, а затем извлеченное из той же степени не становится исходным, а превращается в модуль этого числа.
  • Из-под знака нечетного показателя корня можно выносить минус. Это упрощает процесс подсчета.

В данном учебном ролике в понятной форме изложены все основные свойства и теоремы корней n-ой степени. Тема непонятна для большинства школьников 7-9 классов, но не по причине их сложности (всего пара определений и свойств), а вследствие неправильной подачи информации в учебниках. Поэтому в данном видео мы расскажем о самом грамотном и понятном определении корня – все то, что действительно нужно запомнить. Далее покажем, как все это можно применить на практике.

Корни бывают четные и нечетные. Основные определения, необходимые для изучения данной темы звучат так: корень четной степени n из числа a — это любое неотрицательное число b, которое при умножении на само себя n раз даст число a . А корень нечетной степени n из числа a — это любое неотрицательное или отрицательное число b, которое также при умножении на само себя даст a.

Свойства корня n-ой степени

Что такое корень n-ой степени

Корнем n-ой степени из неотрицательного числа a (n=2, 3, 4. ) называют такое неотрицательное число, при возведении которого в степень n получается число a.

Число a называют подкоренным числом, число n — показателем корня. Важно, что корень четной степени существует только из положительных чисел, а корень нечетной — как из положительных, так и отрицательных, поэтому выражение — 27 4 не имеет смысл, а тот же корень третьей степени имеет — — 27 3 = — 3 .

В алгебре корни нужны для более сокращенных и точных подсчетов, т.к самый простой корень из числа 3 будет равен длинной десятичной дроби, округлив которую получим лишь приблизительное значение. Такие числа называются иррациональными и намного удобнее представить их в виде радикала.

Знак радикала как раз и используют для обозначения корня.

Основные свойства

Основные свойства корня n-ой степени с примерами:

  1. ( a n ) n = a , n — ч е т н о a , n — н е ч е т н о Корень n-ой степени и возведение в эту же степень, эти операции являются взаимопоглощающими, поэтому при извлечении корня и возведении значения в степень, получаем искомое число a. Пример: вычислите значение выражения ( — 5 , 8 3 ) 3 . По свойству получаем значение выражения равному -5,8.
  2. a b n = a n * b n , a ≥ 0 , b ≥ 0 . Пример: найти значение выражения: 25 3 * 5 3 = 25 * 5 = 125 3 3 = 25 .
  3. a b n = a n b n , a ≥ 0 , b > 0 . Пример: найти значение выражения 27 8 3 = 27 3 8 3 = 3 2 .
  4. ( a n ) k = a n k . Пример: найти значение выражения: ( 2 3 ) 6 = 2 3 6 = 64 3 = 4 .
  5. a k n = a n k , a ≥ 0 . Пример: найти значение выражения: 729 2 3 = 729 3 * 2 = 729 6 = 3 .
  6. a k p n p = a k n , a ≥ 0 . Пример: найти значение выражения: 8 6 9 = 8 3 * 2 3 * 3 = 8 2 3 = 64 3 = 4 .
  7. — a n = — a n , n — н е ч е т н о . Пример: найти значения корня: — 27 3 = — 27 3 = — 3

Область определения корня, пояснение на примерах

Под областью определения в математике понимают множество допустимых для конкретного выражения значений неизвестной переменной (x).

Для корня n-ой степени область определения меняется в зависимости от значения показателя корня.

Если n — четное число, где, n = 2m, где m ∈ N, то область определения — это множество всех действительных неотрицательных чисел D ( x 2 * m ) = [ 0 ; + ∞ ) .

Если показатель корня нечетное число больше единицы, то есть, n = 2m+1, то область определения корня — множество всех действительных чисел D ( x 2 * m + 1 ) = ( — ∞ ; + ∞ ) .

Рассмотрим несколько примеров на определение области определения выражений содержащих корень:

  1. Найти область определения функции f ( x ) = 1 x 2 + 4 x + 3 . Решение: т.к. подкоренное выражение с корнем четной степени (n=2) должно быть положительным, то необходимо решить неравенство x 2 + 4 x + 3 > 0 . Неравенство является строгим, потому что знаменатель дроби не может быть равен нулю. После результатам решения неравенства получим область определения D ( f ) = ( — ∞ ; — 3 ) ∪ ( — 3 ; + ∞ ) .
  2. Найти область определения функции y = 12 — 2 x 6 . Решение: подкоренное выражение из корня четной степени должно быть больше или равно нулю, отсюда следует 12 — 2 x ≥ 0 , о т к у д а x ≤ 6 .
  3. Найти область определения функции y = 3 x — 6 — 25 — x 3 . Решение: функция содержит два выражения под корнем и областью определения будет пересечения областей определения каждого подкоренного выражения, однако подкоренное выражение s q r t [ 3 ] 25 — x может любое значение (т.к показатель степени у корня нечетный). Значит для определения области определения всего выражения будет достаточно только указать область определения выражения для подкоренного выражения 3 x — 6 . Получим 3 x — 6 ≥ 0 , j n r e l f x ≥ 2 .

Метод оценки значения

Не из всех чисел можно извлечь челочисленный корень, в таком случае необходимо приблизительно оценить значение этого корня. Методом оценки значения корня является метод подбора левой и правой границ, т.е. целочисленных значений, корень из которых мы можем извлечь.

Рассмотрим пример: оценить значение 19 . Найдем ближайшие числа большие и меньшие 19, из которых извлекается целочисленный корень, это соответственно 25 и 16, тогда имеем: 16 19 25 , значит 4 19 5 . Значение корня извлеченного из 19 находится в промежутке между 4 и 5.

Рассмотрим еще один пример: оценить значение выражения 19 3 . Найдем ближайшие целочисленные границ, из которых можем извлечь кубический корень, получим: 8 3 19 3 27 3 , значит 2 19 3 3 . Значение кубического корня, извлеченного из числа 19 находится в промежутке между 2 и 3.

Задания для самопроверки

Выполним ряд заданий для проверки и закрепления работы с корнями n-ой степени.

Найти значение выражения 121 * 64 .

Решение: применим свойство произведения корней a b n = a n * b n , получим 121 * 64 = 11 * 8 = 88 .

Решить неравенство ( x — 2 ) 2 ≤ 4 .

Решение: применим свойство корня , тогда неравенство примет вид: ( x — 2 ) ≤ 4 или — 4 ≤ x — 2 ≤ 4 , решая двойное неравенство получим — — 2 ≤ x ≤ 6 .

Найти значение выражения 16 81 4 .

Решение: применим свойство корня a b n = a n b n , получим 16 4 81 4 = 2 3 .

Указать имеет ли смысл выражение — 27 3 .

Решение: вспомним какие числа являются область определения для корня нечетной степени, эти числа — любые, отсюда следует, что выражение — 27 3 имеет смысл.

Указать при каких значениях переменной у имеет смысл выражение 1 y — 1 .

Решение: чтобы определить все допустимые значения переменной необходимо обеспечить выполнение двух условий.

Подкоренное выражение из корня четной степени принимает неотрицательные значения, второе в дроби знаменатель не может быть равен нулю, тогда получим систему: y ≥ 0 y — 1 ≢ 0

Решая эту систему, получим y ≥ 0 y ≢ 1 . Значит выражение имеет смысл при всех у больше или равных нулю, исключая единицу.

Оцените значение выражения 124 4 .

Решение: Найдем ближайшие левую и правую границы, из которых можно извлечь целочисленный корень четвертой степени, получим 81 4 124 4 256 4 или 3 124 4 4 .

Свойства корней: формулировки, доказательства, примеры

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств , изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a : b = a : b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению , необходимо рассмотреть, что a · b — число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде ( a · b ) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b 2 = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 ( 1 ) = 2 , 7 · 4 · 12 17 · 0 , 2 ( 1 ) .

Необходимо доказать свойство арифметического квадратного корня из частного: a : b = a : b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a : b 2 = a 2 : b 2 , а a 2 : b 2 = a : b , при этом a : b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0 : 16 = 0 : 16 , 80 : 5 = 80 : 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенства как a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a 0 будет верно равенство a 2 = — a . На самом деле, в этом случае − a > 0 и ( − a ) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 — a , a 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

5 2 = 5 = 5 и — 0 , 36 2 = — 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением ( a m ) 2 , тогда a 2 · m = ( a m ) 2 = a m .

3 8 = 3 4 = 3 4 и ( — 8 , 3 ) 14 = — 8 , 3 7 = ( 8 , 3 ) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m — 1 2 · m — 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде . . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения , которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a b , выполняется неравенство a n b n ;
  8. Свойство сравнения , которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 a 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , ( 21 ) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , ( 21 ) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

8 27 3 = 8 3 27 3 и 2 , 3 10 : 2 3 10 = 2 , 3 : 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m — 1 2 · m — 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m — 1 2 · m — 1 = a очевидно. При a 0 получаем соответственно a = — a и a 2 · m = ( — a ) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m — 1 2 · m — 1 = a будет справедливо, так как за нечетной степени рассматривается — c 2 · m — 1 = — c 2 · m — 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

7 4 4 = 7 = 7 , ( — 5 ) 12 12 = — 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и ( — 3 , 39 ) 5 5 = — 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись . Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению . С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a b . Рассмотрим неравенство a n b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a b . Следовательно, a n b n при a b .

Для примера приведем 12 4 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 a 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 a 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.


источники:

http://wika.tutoronline.ru/algebra/class/11/svojstva-kornya-oj-stepeni

http://zaochnik.com/spravochnik/matematika/korni/svojstva-kornej/