Корни характеристического уравнения передаточной функции

Контрольная работа: Передаточные функции одноконтурной системы

Практическая работа № 1

1. По заданным дифференциальным уравнениям определить операторные уравнения при нулевых начальных условиях, передаточные функции, структурные схемы звеньев, характеристические уравнения и их корни. Показать распределение корней на комплексной плоскости.

Оценить устойчивость каждого из звеньев.

а) ; б).

2. По заданной передаточной функции записать дифференциальное уравнение:

.

1. а). Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s) и F(s) как изображения сигналов соответственно y и f , тогда операторное уравнение (при нулевых начальных условиях) примет вид:

1,25s3Y(s) – 4s2Y(s) + 5sY(s) = 3F(s) – sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и F(s) за скобки:

Y(s). (1,25s3 – 4s2 + 5s) = F(s). (3 – s).

.

Очевидно, что входной сигнал x отсутствует, и выходной сигнал у определяется только внешним воздействием f (система, действующая по возмущению): , то получается уравнение Y(s) = WF(s).F(s). Структурная схема объекта приведена на рис. 1.

Передаточная функция имеет знаменатель, называемый характеристическим выражением:

A(s) =.

Если приравнять данное выражение к нулю, то образуется характеристическое уравнение , корни которого:

, и .

Распределение корней на комплексной плоскости показано на рис. 2. По рисунку видно, что корни лежат в правой полуплоскости, следовательно, объект неустойчив.

б) Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s), X(s) и F(s) как изображения сигналов соответственно y , x и f , тогда операторное уравнение (при нулевых начальных условиях) примет вид:

2s2Y(s) + 4sY(s) + 10Y(s) = 3X(s) + 4sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и X(s) за скобки:

Y(s). (5s2 + 4s + 10) = 3X(s) + 4sF(s).

.

Если обозначить передаточные функции объекта как

и ,

то получается уравнение Y(s) = Wx(s).X(s) + WF(s).F(s). Структурная схема объекта приведена на рис. 3.

Характеристическая функция имеет вид:

,

а характеристическое уравнение:

.

Корни этого уравнения равны:

и .

Распределение корней на комплексной плоскости показано на рис. 4:

Все корни характеристического уравнения лежат в левой полуплоскости, очевидно, что объект устойчив.

2. Дана передаточная функция вида:

Зная, что по определению, , получим:

, тогда:

.

Применяя к полученному выражению обратное преобразование Лапласа, находим искомое дифференциальное уравнение:

.

Практическая работа № 2

Дана одноконтурная АСР, для которой определена передаточная функция регулятора (Р) с настройками и дифференциальное уравнение объекта управления (ОУ). Требуется определить:

— передаточную функцию разомкнутой системы W∞(s),

— характеристическое выражение замкнутой системы (ХВЗС),

— передаточные функции замкнутой системы Фз(s) – по заданию, Фв(s) – по возмущению, ФЕ(s) – по ошибке,

— коэффициенты усиления АСР,

Р — ПИ-регулятор с ПФ вида ;

дифференциальное уравнение объекта управления:

.

Определим передаточную функцию объекта:

W об( s ) .

Передаточная функция разомкнутой системы имеет вид:

Характеристическое выражение замкнутой системы:

;

Передаточные функции замкнутой системы:

— по заданию;

— по ошибке;

— по возмущению.

По передаточным функциям определим коэффициенты усиления путем подстановки в них s = 0:

К3 = Ф3(0) = 1 – по заданию;

КЕ = ФЕ(0) = 0 – по ошибке;

Кв = Фв(0) = 0 – по возмущению.

Определим устойчивость АСР по критерию Гурвица.

Так как коэффициенты ХВЗС а3 = 4, а2 = 6, а1 = 18, а0 = 4 (степень полинома n = 3), то матрица Гурвица имеет вид:

Диагональные миноры матрицы равны соответственно:

Поскольку все определители положительны, то АСР является устойчивой.

Практическая работа № 3

По табличным данным построить переходную кривую объекта, определить параметры передаточной функции объекта, рассчитать настройки ПИД-регулятора, обеспечивающие 20%-е перерегулирование.

DXвх = 5,5 кПа; DY = 0,149 %; tзап = 40 сек

Корни характеристического уравнения передаточной функции

Корневые критерии качества переходных процессов

Эта группа критериев основана на оценке качества переходных процессов по значениям полюсов и нулей передаточной функции системы между интересующими нас входами и выходами системы.

Как известна, переходная характеристика системы может быть определена следующим образом –

где – корни характеристического уравнения системы

.

Очевидно, что на характер переходного процесса оказывает влияние и числитель и знаменатель передаточной функции. Но, в большинстве случаев, при анализе систем по реакции на управляющее воздействие, не имеет корней, то есть передаточная функция не имеет нулей. Тогда характер переходного процесса можно оценить только по полюсам передаточной функции, подвергая тем самым анализу корни характеристического уравнения системы –

В случае приближенной оценки качества по корням характеристического уравнения на комплексной плоскости выделяют область расположения корней, границы которой задаются по требованиям к качеству процессов, как это показано на рис. 1.

Границы области, показанной на рис. 1, задаются следующими параметрами:

– критерий длительности переходного процесса,

– колебательность переходного процесса, определяется по ,

– максимальное удаление корня от мнимой оси.

Рассмотрим эти параметры.

Критерий длительности определяется как расстояние от мнимой оси до ближайшего действительного корня или ближайшей пары комплексно сопряженных корней.

Выясним, действительно ли этот параметр характеризует длительность переходного процесса? Возможны два случая расположения корней на границе области.

Пусть ближайшим к мнимой оси, то есть лежащий на границе области, будет действительный корень –

,

тогда соответствующая ему компонента переходного процесса, в соответствии с (1) будет иметь вид –

где — коэффициент разложения (1).

Если ближайшей к мнимой оси будет комплексно-сопряженная пара корней –

,

тогда соответствующая им компонента переходного процесса, в соответствии с (1) будет иметь вид –

где — частота колебаний.

Из (3) и (4) мы видим, что время затухание компоненты определяет сомножитель –

,

где – величина минимального действительного корня или минимальной действительной части корней, – соответствующая , наибольшая постоянная времени. Таким образом, можно считать, что переходный процесс системы завершится не раньше, чем затухнет компонента . Следовательно, определяет длительность переходного процесса, будучи величиной, обратно пропорциональной времени регулирования. Зная , мы можем оценить время регулирования или переходного процесса по следующему соотношению –

,

где – половина ширины области, при попадании в которую переходной процесс считается завершенным. Если , а крайний корень действительный, то имеем –

.

Критерий колебательности определяется по углу следующим образом –

.

где – соответственно действительная и мнимая части комплексно сопряженной пары корней расположенных на границе области (см. рис. 1). При увеличении возрастает колебательность системы.

Дальнюю от мнимой оси границу области , определяют корни, оказывающие предельно малое влияние на переходный процесс.

При прочих равных условиях от системы требую увеличения и снижения .

В качестве примера влияния расположения корней на характер переходных процессов покажем графики, представленные на рис. 2 и 3.

Рис. 2

Рис. 3

Если передаточная функция системы имеет нули, то оценка качества системы только по полюсам может дать существенную погрешность.

Чтобы пояснить характер влияния нулей на качество переходных процессов, представим систему следующим образом, как это показано на рис. 4.

Конкретизируем задачу, пусть

,

а имеет вид, показанный на рис. 5. При этом рассмотрим два варианта графика:

,

  • .

Из рассмотрения рис. 5 можно сделать вывод, что члены с положительными коэффициентами приводят к повышению колебательности и быстродействия, а отрицательные коэффициенты затягивают переходный процесс.

В тех случаях, когда требуется получить желаемый вид переходного процесса, используют методы, основанные на связи коэффициентов характеристического уравнения системы или его корней с видом переходного процесса, с заданными динамическими показателями.

Рассмотрим характеристическое уравнение вида –

По формулам Виета определяется как сумма всех корней уравнения, – сумма произведений всех пар корней, – сумма произведений всех троек корней и т. д., а определяется как произведение всех корней уравнения –

.

Теперь, если мы сможем задать расположение корней на комплексной плоскости, исходя из требований качества динамики, то по формулам Виета можно найти значения коэффициентов характеристического уравнения, которые связаны с параметрами системы.

Обратим особое внимание на коэффициент , чем больше , то, при прочих равных условиях, больше действительные части корней, следовательно, быстрее переходный процесс. Если корни действительные и кратные, тогда –

.

где носит название среднегеометрического корня характеристического уравнения.

Тогда уравнение (6) с учетом (7) имеет вид –

На комплексной площади расположения корней характеристического уравнения определяет точку на действительной оси – геометрический центр всех корней системы, а коэффициенты определяют взаимное расположение корней. При этом легко показать, что определяют кривую переходного процесса в относительном времени , а величина определяет масштаб времени для этого процесса.

На практике рассмотренный выше подход используют следующим образом:

Для конкретной системы определяют требуемый вид переходного процесса.

Для обеспечения заданных требований выбирают из имеющихся в справочной литературе предварительно рассчитанные значения коэффициентов характеристического уравнения, тем самым выбирается «желаемое» характеристическое уравнение –

Определяют характеристическое уравнение по структуре и параметрам системы –

где – коэффициенты, функционально связанные с параметрами системы.

Получают систему алгебраических уравнений, приравняв коэффициенты уравнений (8) и (9) при одинаковых степенях оператора Лапласа –

Решают систему (10) относительно изменяемых параметров системы (параметров регуляторов), что позволяет определить параметры, обеспечивающие заданный вид и качество переходного процесса.

Описанный выше алгоритм часто называют методом стандартных коэффициентов или стандартного расположения корней характеристического уравнения системы управления. Рассмотрим в качестве иллюстрации два стандартных расположения корней, которые наиболее распространенны в системах управления электромеханическими приводами различных установок.

Биномиальное распределение корней

Биномиальное распределение корней используют для обеспечения заданного быстродействия при монотонности переходных процессов. Стандартное биномиальное характеристическое уравнение имеет вид –

В этом случае имеем кратных действительных корней с отрицательной действительной частью, равной . Вид переходных процессов для от 1 до 4 показан на рис. 6. Характеристические уравнения для этих случаев имеют вид –

Корректным является сопоставление системы автоматического управления и идеальным фильтром низкой частоты (ФНЧ), когда для полосы пропускания системы (НЧ) требуют максимальной горизонтальности ЛАЧХ, что обеспечивает пропускание без искажений сигналов управления. Для диапазона высоких частот (ВЧ) требуют максимального подавления сигнала, так как это диапазон сигналов помех. Рис. 7 иллюстрирует приближение желаемой характеристики системы к характеристике «идеального» фильтра низкой частоты.

Распределение корней по Баттерворту обеспечивает компромисс между этими требованиями, достигая высокой равномерности в полосе пропускания НЧ при приемлемой крутизне характеристики в полосе подавления ВЧ.

При этом корни характеристического уравнения располагаются на комплексной плоскости, на окружности с радиусом и угловым расстоянием между корнями – , симметрично относительно действительной оси, как это показано на рис. 8.

Вид переходных процессов для от 1 до 4 показан на рис. 9.

Характеристические уравнения и параметры переходного процесса для этих случаев имеют вид –

Сравнение переходных характеристик показывает, что распределение Баттерворта обеспечивает более высокое, чем биномиальное распределение, быстродействие с малым перерегулированием и колебательностью.

Контрольные вопросы и задачи

Как объяснить влияние на переходные процессы корней характеристического уравнения?

Какую компоненту переходного процесса дает отрицательный действительный корень характеристического уравнения?

Какие компоненты переходного процесса дают комплексно сопряженные корни характеристического уравнения?

Что определяют корни характеристического уравнения ближе всего расположенные к мнимой оси комплексной плоскости?

Как связана с быстродействием системы величина среднегеометрического корня характеристического уравнения?

Какое влияние оказывает на переходный процесс нули передаточной функции?

В каких случаях следует использовать на настройки системы биномиальное распределение корней характеристического уравнения?

В каких случаях следует использовать на настройки системы распределение корней характеристического уравнения Баттерворта?

Определите коэффициенты характеристического уравнения с биномиальным распределением корней для системы управления третьего порядка, если требуемое время регулирования .

Желаемое характеристическое уравнение имеет вид –

.

Определите коэффициенты характеристического уравнения с распределением корней по Баттерворту для системы управления четвертого порядка, если требуемое время регулирования .

Желаемое характеристическое уравнение имеет вид –

.

корней характеристического уравнения

Одним из косвенных показателей качества систем управления является степень удаленности корней характеристического уравнения замкнутой САУ от мнимой оси комплексной плоскости. Пусть ближайшие к мнимой оси комплексно-сопряженные корни устойчивой системы имеют значение

. (7.1)

Расстояние (рис. 8.2) ближайших к мнимой оси комплексно-сопряженных корней называется степенью устойчивости системы.

Угол φ, образуемый лучами, проведенными из начала координат через эти корни, характеризует колебательность системы. Степенью колебательности системы (коэффициентом затухания колебаний) называют количественную характеристику, определяемую выражением

. (7.2)

Чтобы система обладала заданной колебательностью, все корни характеристического уравнения должны вписываться в угол 2φ (см. рис. 7.2). Для большинства систем управления допустимое перерегулирование не должно превышать (10…20)%, что соответствует m=0,2…0,5.

Рис. 7.2. Область расположения корней

с заданными показателями и

При корневых методах оценки качества системы, т. е. по расположению корней характеристического полинома, исходят из следующих соображений.

Решение однородного уравнения, характеризующего свободное движение системы, представляет собой сумму затухающих экспонент вида (6.2). Полагая, что качество САУ в основном определяется ближайшим к мнимой оси вещественным корнем или ближайшей к мнимой оси парой комплексно-сопряженных корней (доминирующих корней), можно записать

.

Полагая, что зона δ установления переходного процесса составляет (2…5)% от установившегося значения , можно найти требуемое соотношение степени устойчивости системы и времени регулирования tр:

. (7.3)

Следовательно, задаваясь временем регулирования, можно рассчитать минимальное (по модулю) значение вещественных частей корней характеристического уравнения.

Аналогично можно связать степень колебательности m системы со степенью затухания колебаний. Пусть по условиям технологии требуется, чтобы каждая последующая амплитуда колебаний затухала в k раз по сравнению с предыдущей. Тогда

. (7.4)

Пусть k=10, тогда в соответствие с (7.4) получим m=0,336 и

.

Таким образом, задаваясь временем регулирования и соотношением амплитуд колебаний k, можно определить допустимую область расположения корней на комплексной плоскости или решить обратную задачу расчета параметров и k переходного процесса по расположению доминирующих корней характеристического уравнения. Следует отметить, что данный подход дает приемлемую точность оценки качества регулирования, если действительные части остальных корней характеристического уравнения больше действительной части доминирующих корней, по крайней мере, в 5 раз [6].

Для построения в плоскости параметров областей, обеспечивающих требуемые показатели качества регулирования целесообразно использовать метод D-разбиения [6]. В качестве примера используем уравнение Вышнеградского, описывающего в параметрической форме характеристический полином 3-го порядка,

. (7.5)

где A и B – обобщенные параметры характеристического уравнения.

Подставим выражение для комплексного корня в (7.5). Тогда получим

.

Приравнивая нулю вещественную и мнимую части, получим

, (7.6)

Полагая в (7.6), получим границу области устойчивости системы в параметрической форме

(7.7)

— уравнение гиперболы Вышнеградского (кривая 1, рис. 7.3).

Рис. 7.3. Границы областей устойчивости,

колебательности и апериодичности на

Полагая в (7.6), получим границу области апериодичности системы в параметрической форме (кривые 2 и 3 на рис. 7.3)

.

Поскольку на кривой 1 ω ≠ 0, а на кривых 2 и 3 ω = 0, то области I и III являются областями комплексных, а область II – вещественных корней (см. рис. 7.3). Следовательно, если параметры A, B принадлежат области II, то переходные процессы имеют апериодический характер, причем, чем эти параметры больше, тем процессы более затянуты. Если параметры принадлежат области I, то переходные процессы имеют колебательный характер, причем, чем больше A и меньше B, тем выше колебательность. Область III является областью монотонности решения однородного дифференциального уравнения, соответствующего (7.5), а, следовательно, переходные процессы, имея колебательный характер, тем не менее, затухают монотонно (без перерегулирования).

Диаграмма Вышнеградского [19] помимо приведенных кривых содержит кривые равных вещественных частей комплексных корней (равной степени устойчивости), причем для двух случаев расположения корней, когда ближайшими к мнимой оси являются комплексные корни и, когда ближайшим к мнимой оси расположен вещественный корень (на рис. 7.3 эти кривые не показаны). В частности, на границе областей I и III (кривая 4) все три корня равно удалены от мнимой оси.

Требования повысить быстродействие и одновременно снизить перерегулирование в системе являются противоречивыми друг другу, что заставляет искать компромисс. В общем случае, с точки зрения переходного процесса наилучшей считается САУ, у которой все корни характеристического уравнения n-го порядка равны друг другу (на практике редко реализуется), т. е.

, i=1, 2, 3…n.

В этом случае перерегулирование не превышает 10%, а время нарастания регулирования является минимальным.

Если все корни являются вещественными, то система характеризуется отсутствием перерегулирования, т. е. апериодическими переходными процессами. Время регулирования будет тем меньше, чем меньше среднегеометрический корень или, иначе, чем ближе к мнимой оси расположен центр корней.

При анализе качества системы корневыми методами необходимо учитывать влияние нулей передаточной функции на переходный процесс.

Прежде всего, нужно проверить, насколько близки нули к полюсам.

Если нуль и полюс совпадают, то их нужно сократить, и они не будут влиять на качество системы. Порядок системы при этом, естественно, будет понижен.

Если полюсы и нули передаточной функции не совпадают, то полюсы определяют отдельные составляющие переходного процесса (апериодические и гармонические), а нули определяют удельный вес каждой из этих составляющих. Чем ближе нуль передаточной функции расположен к какому-либо полюсу, тем меньше его вклад в переходную характеристику составляющей, соответствующей данному полюсу.

7.2.2. Интегральные оценки качества

В основе интегральных оценок качества лежит предположение, что качество регулирования тем выше, чем меньше площадь между кривой переходного процесса и заданным значением регулируемой переменной. Интегральные оценки качества являются строгой математической формулировкой понятия качества системы, и их минимизация позволяет определить оптимальные параметры системы управления, т. е. решить задачу параметрического синтеза системы. Для этой цели применяются процедуры безусловной и условной оптимизации [2, 6, 10-12, 19-21].

Наибольшее применение для косвенной оценки качества САУ находят интегральные оценки вида [6, 11, 12, 19]:

; (7.8)

; (7.9)

; (7.10)

; (7.11)

, (7.12)

где — текущая ошибка регулирования, являющаяся функцией времени,

С – некоторый весовой коэффициент, характеризующий допустимую скорость изменения ошибки регулирования, а, следовательно, выходной координаты в переходном процессе.

В критерии (7.8) подынтегральное выражение линейно относительно ошибки регулирования и такая оценка применяется только для апериодического переходного процесса, когда ошибка имеет положительный знак.

Интегральная квадратичная оценка (ИКО) вида (7.9) применяется при колебательном характере переходных процессов, характеризующихся сменой знака ошибки регулирования. Интегральная квадратичная оценка (7.10) применяется в тех случаях, когда требуется учитывать ограничения энергии управления.

Широко используемым видом оценки качества является интеграл от модуля ошибки (ИМО) – (7.11), позволяющем учесть смену знака подынтегральной функции.

Чтобы уменьшить вклад начальной ошибки в интеграл (7.11) и учесть связанную с этим ошибку была предложена [6] оценка в виде интеграла от взвешенного модуля ошибки (ИВМО) в виде (7.12).

Рассмотрим пример. Пусть передаточная функция замкнутой системы 2-го порядка имеет вид:

, (7.13)

где — коэффициент затухания.

Нормированное значение собственной частоты принято . На рис. 7.4 приведены кривые, отражающие изменение двух из приведенных выше интегральных оценок системы (ИКО и ИВМО) в функции коэффициента затухания [6].

Рис. 7.4. Интегральные оценки

качества системы второго порядка

Как видим, оценка ИВМО по сравнению с ИКО имеет ярко выраженный минимум (хорошую избирательность), соответствующий = 0,707, что для данной системы 2-го порядка обеспечивает наиболее быстрое протекание переходного процесса с перерегулированием около 4,3%.

Рассмотрим еще один пример. Пусть передаточная функция замкнутой системы имеет достаточно общий вид нерекурсивного фильтра n-го порядка:

. (7.14)

Безусловная оптимизация систем первого-четвертого порядка (n=1…4), описываемых передаточными функциями (7.14), по критерию ИВМО дает оптимальные значения коэффициентов полиномов знаменателей этих передаточных функций, приведенные в табл. 7.1. Значения коэффициентов нормированы относительно собственной частоты колебаний .

На рис. 7.5 приведены кривые переходных процессов, соответствующих оптимальным по критерию ИВМО фильтрам первого-четвертого порядка.

Название: Передаточные функции одноконтурной системы
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 21:52:15 24 декабря 2010 Похожие работы
Просмотров: 508 Комментариев: 14 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
Порядок системыПолином знаменателя передаточной функции
n=1
n=2
n=3
n=4

Значения коэффициентов нормированы относительно собственной частоты колебаний . На рис. 7.5 приведены кривые переходных процессов, соответствующие оптимизации фильтров первого-четвертого порядка по критерию ИВМО.

Рис. 7.5. Переходные характеристики, соответствующие

оптимизации систем по ИВМО

Графики построены в зависимости от нормированного времени .

Кроме приведенных оценок для оптимизации систем управления применяются и другие интегральные критерии качества, в частности, лежащие в основе синтеза фильтров Баттерворта, широко применяемых при настройке контуров электромеханических систем управления.

8. Метод пространства состояний

Широкое распространение компьютеров и мощных систем программирования побуждает к исследованию САУ во временной области, а, следовательно, к непосредственному использованию описания динамических систем управления в форме обыкновенных дифференциальных уравнений без перехода к операторной форме. Кроме того, как уже отмечалось, векторно-матричные формы описания и исследования применимы не только к одномерным, линейным, стационарным САУ, но и к широкому классу многомерных, нелинейных и нестационарных САУ.

Чтобы получить пригодную для компьютерного синтеза и анализа модель САУ, необходимо представить ее в переменных состояния системы, используя далеко не единственный набор переменных. Следует отметить, что описание систем во временной области в векторно-матричной форме лежит в основе современной теории управления и оптимизации. В настоящей главе рассмотрены вопросы применения метода пространства состояния к непрерывным системам управления.

8.1. Векторно-матричное описание САУ

Состояние системы – это совокупность значений переменных системы (координат состояния), существенных с точки зрения решаемой задачи. В общем случае, в это число включают не только выходные и внутренние переменные САУ, но и задающие воздействия, и доминирующие возмущающие воздействия внешней среды. Чем полнее достоверной информации о состоянии системы в текущий момент времени, тем проще определить будущие значения всех ее переменных. Инженерно-технический персонал, разрабатывающий и эксплуатирующий технические системы управления, оперирует, как правило, с такими физическими переменными, которые могут быть измерены с помощью соответствующих датчиков. К таким физическим переменным САУ относят ускорение, скорость, перемещение, давление, расход, температуру, уровень и т. п. Координатами датчиков технологических координат САУ являются другие переменные — напряжение, ток, частота следования импульсов, двоичный код и т. п., что дает исследователю возможность выбора для синтеза и анализа необходимого набора координат состояния САУ.

Векторно-матричная модель многомерной, нелинейной, нестационарной САУ записывается в виде [6, 10, 11, 19]

,

, (8.1)

где X(t), U(t),F(t), Y(t) – соответственно векторы состояния, управления, возмущения и выходных (управляемых) координат системы,

– вектор первых производных координат состояния,

– нелинейные, нестационарные функции координат состояния, управления и возмущения системы.

В уравнении (8.1) вектор управления U(t) является, в общем случае, некоторой нелинейной нестационарной функцией задающих координат, координат состояния и возмущения САУ и призван обеспечить оптимальное управление системой. Описание многомерных, нелинейных, нестационарных САУ в форме (8.1) не позволяет, как правило, получить инженерное решение задачи структурно-параметрического синтеза оптимального управления U(t) или такое решение приводит к неоправданным затратам на реализацию (в техническом или экономическом аспектах). В большинстве случаев такие модели сводят к одномерным или многомерным линейным (линеаризованным) квазистационарным моделям, для которых имеются развитые методы и инженерные методики синтеза оптимального управления.

Линейную (линеаризованную) модель многомерной стационарной (квазистационарной) САУ представляют в виде системы обыкновенных дифференциальных уравнений первого порядка в форме Коши:

,

, (8.2)

.

Эту же систему дифференциальных уравнений можно представить в векторно-матричной форме [6, 11, 19]:

, (8.3)

где — векторы (векторы-столбцы) соответственно состояния и управления САУ,

, ;

— символ транспонирования (иногда для обозначения транспонирования применяют буквенный символ “т”);

— стационарные матрицы соответственно состояния и управления,

, .

В общем случае, на объект управления помимо управляющих воздействий действуют возмущающие воздействия. В этом случае векторно-матричную модель системы представляют в виде

, (8.4)

где — вектор-столбец возмущающих воздействий САУ, C – стационарная матрица возмущений,

,

.

Выходные (управляемые) переменные не всегда непосредственно принадлежат вектору состояния. В линейных САУ они линейно связаны с переменными состояния, управляющими и возмущающими переменными. В этом случае к уравнениям (8.3), (8.4) присоединяют алгебраические линейные уравнения

(8.5)

или , (8.6)

где — вектор выходных переменных САУ, ;

K, L, M – стационарные матрицы соответственно размерностей (r n), (r m), (r d).

Следует отметить, что приведенные уравнения (8.1)…(8.6) дают описание лишь объекта управления или разомкнутой системы, если вектор управления U(t) не является функцией координат состояния САУ. В замкнутых линейных САУ управление обычно формируют как линейную форму координат состояния и, в общем случае, возмущения САУ.

В качестве примера приведем векторно-матричное описание ранее рассматриваемого электродвигателя постоянного тока как объекта регулирования по цепи якоря. Пусть выходной (регулируемой) координатой является скорость вращения двигателя. Полагая, что напряжение возбуждения , а магнитный поток , математическую модель электродвигателя можно представить в виде:

,

. (8.7)

Воспользуемся векторно-матричной моделью линейных САУ в виде (8.4), (8.5). Зададимся векторами состояния, управления и возмущения в виде:

; ;

(8.8)

По уравнениям (8.7) найдем матрицы состояния, управления и возмущения:

; ; . (8.9)

Поскольку выходная переменная всего одна и ей является координата состояния , уравнение выхода преобразуется к скалярной форме

. (8.10)

По описанию системы в форме векторно-матричных уравнений (ВМУ) можно непосредственно получить эквивалентную передаточную функцию (ПФ) и, наоборот, зная ВМУ системы, можно получить ее ПФ. Для этого в системе MATLAB имеется две функции: функция tf и функция ss.

Пусть ВМУ системы имеет вид (8.3), (8.5). Применительно к системе MATLAB ВМУ записывают в виде

Для получения ВМУ в системе MATLAB необходимо определить функцию ss(A,B,C,D). Для преобразования ВМУ к ПФ системы необходимо записать:

sys­_ss=ss(A,B,C,D); % Формирование ВМУ системы;

sys_tf=tf(sys­_ss), % Преобразование ВМУ к ПФ системы.

Для обратного преобразования ПФ к ВМУ необходимо записать:

sys_tf=tf(num,den); % Формирование ПФ системы;

sys_ss=ss(sys_tf); Преобразование ПФ к ВМУ системы.

Рассмотрим пример. Пусть ПФ системы имеет вид

.

Тогда запишем скрипт преобразования ПФ к ВМУ и обратного преобразования ВМУ к ПФ:

sys_tf=tf(num,den); % Формирование ПФ системы;

sys_ss=ss(sys_tf); %Преобразование ПФ к ВМУ системы;


источники:

http://drive.ispu.ru/elib/lebedev/20.html

http://poisk-ru.ru/s49289t1.html