Корни характеристического уравнения разомкнутой системы

Критерии устойчивости (Лекция)

2. Корневой критерий

3. Критерий Стодолы

4. Критерий Гурвица

5. Критерий Михайлова

6. Критерий Найквиста

7. Показатели качества

8. Прямые показатели качества

9. Корневые показатели качества

10. Частотные показатели качества

Важным показателем АСР является устойчивость, поскольку основное ее назначение заключается в поддержании заданного постоянного значения регулируемого параметра или изменение его по определенному закону. При отклонении регулируемого параметра от заданной величины (например, под действием возмущения или изменения задания) регулятор воздействует на систему таким образом, чтобы ликвидировать это отклонение. Если система в результате этого воздействия возвращается в исходное состояние или переходит в другое равновесное состояние, то такая система называется устойчивой. Если же возникают колебания со все возрастающей амплитудой или происходит монотонное увеличение ошибки е, то система называется неустойчивой.

Для того, чтобы определить, устойчива система или нет, используются критерии устойчивости:

1) корневой критерий,

2) критерий Стодолы,

3) критерий Гурвица,

4) критерий Найквиста,

5) критерий Михайлова и др.

Первые два критерия являются необходимыми критериями устойчивости отдельных звеньев и разомкнутых систем. Критерий Гурвица является алгебраическим и разработан для определения устойчивости замкнутых систем без запаздывания. Последние два критерия относятся к группе частотных критериев, поскольку определяют устойчивость замкнутых систем по их частотным характеристикам. Их особенностью является возможность применения к замкнутым системам с запаздыванием, которыми является подавляющее большинство систем управления.

2. Корневой критерий

Корневой критерий определяет устойчивость системы по виду передаточной функции. Динамической характеристикой системы, описывающей основные поведенческие свойства, является характеристический полином, находящийся в знаменателе передаточной функции. Путем приравнивания знаменателя к нулю можно получить характеристическое уравнение, по корням которого определить устойчивость.

Корни характеристического уравнения (они обозначены звездочкой) могут быть как действительные, так и комплексные и для определения устойчивости откладываются на комплексной плоскости.

Виды корней характеристического уравнения:

положительные (корень № 1);

комплексные сопряженные (4);

По кратности корни бывают:

одиночные (1, 2, 3);

сопряженные (4, 5): si = a ± j w ;

Корневой критерий формулируется следующим образом:

Линейная АСР устойчива, если все корни характеристического уравнения лежат в левой полуплоскости. Если хотя бы один корень находится на мнимой оси, которая является границей устойчивости, то говорят, что система находится на границе устойчивости. Если хотя бы один корень находится в правой полуплоскости (не зависимо от числа корней в левой), то система является неустойчивой.

Иными словами, все действительные корни и действительные части комплексных корней должны быть отрицательны. В противном случае система неустойчива.

Пример 4.1. Передаточная функция системы имеет вид:

.

Характеристическое уравнение: s 3 + 2 s 2 + 2.25 s + 1.25 = 0.

Следовательно, система устойчива.

3. Критерий Стодолы

Этот критерий является следствием из предыдущего и формулируется следующим образом: Линейная система устойчива, если все коэффициенты характеристического полинома положительны.

То есть, для передаточная из примера 4.1 по критерию Стодола соответствует устойчивой системе.

4. Критерий Гурвица

Критерий Гурвица работает с характеристическим полиномом замкнутой системы. Как известно, структурная схема АСР по ошибке имеет вид, как показано на рисунке ниже.

Wp — передаточная функция регулятора,

Wy — передаточная функция объекта управления.

Определим передаточную функцию для прямой связи (передаточную функцию разомкнутой системы): W ¥ = Wp Wy .

Далее с учетом наличия отрицательной обратной связи получаем передаточную функцию замкнутой системы:

.

Как правило, передаточная функция разомкнутой системы имеет дробно-рациональный вид:

.

Тогда после подстановки и преобразования получаем:

.

Отсюда следует, что характеристический полином замкнутой системы (ХПЗС) можно определить как сумму числителя и знаменателя W ¥ :

D з( s ) = A ( s ) + B ( s ).

Для определения устойчивости по Гурвицу строится матрица таким образом, чтобы по главной диагонали были расположены коэффициенты ХПЗС с an +1 по a 0. Справа и слева от нее записываются коэффициенты с индексами через 2 ( a 0, a 2, a 4… или a 1, a 3, a 5 …). Тогда для устойчивой системы необходимо и достаточно, чтобы определитель и все главные диагональные миноры матрицы были больше нуля.

Если хотя бы один определитель будет равен нулю, то система будет находится на границе устойчивости.

Если хотя бы один определитель будет отрицателен, то система неустойчива не зависимо от числа положительных или нулевых определителей.

Пример. Дана передаточная функция разомкнутой системы

.

Требуется определить устойчивость замкнутой системы по критерию Гурвица .

Для этого определяется ХПЗС :

D(s) = A(s) + B(s) = 2s 4 + 3s 3 + s 2 + 2s 3 + 9s 2 + 6s + 1 = 2s 4 + 5s 3 + 10s 2 + 6s + 1.

Поскольку степень ХПЗС равна n = 4, то матрица будет иметь размер 4х4. Коэффициенты ХПЗС равны а4 = 2, а3 = 5, а2 = 10, а1 = 6, а0 = 1.

Матрица имеет вид:

(обратите внимание на сходство строк матрицы: 1 с 3 и 2 с 4). Определители:

,

Поскольку все определители положительны, то АСР устойчива.

5. Критерий Михайлова

Описанные выше критерии устойчивости не работают, если передаточная функция системы имеет запаздывание, то есть может быть записана в виде

,

где t — запаздывание.

В этом случае характеристическое выражение замкнутой системы полиномом не является и его корни определить невозможно. Для определения устойчивости в данном случае используются частотные критерии Михайлова и Найквиста.

Порядок применения критерия Михайлова:

1) Записывается характеристическое выражение замкнутой системы:

D з (s) = A(s) + B(s) . e — t s .

2) Подставляется s = j w : D з (j w ) =Re( w ) + Im( w ).

3) Записывается уравнение годографа Михайлова D з( j w ) и строится кривая на комплексной плоскости.

Для устойчивой АСР необходимо и достаточно, чтобы годограф Михайлова (см. рис.), начинаясь при w = 0 на положительной вещественной полуоси, обходил последовательно в положительном направлении (против часовой стрелки) при возрастании w от 0 до ¥ n квадрантов, где n — степень характеристического полинома.

Если годограф Михайлова проходит через начало координат, то говорят, что система находится на границе устойчивости.

6. Критерий Найквиста

Данный критерий аналогичен критерию Михайлова, но работает с АФХ системы, поэтому более сложен для расчетов.

1) Определяется передаточная функция разомкнутой системы .

2) Определяется число правых корней m .

3) Подставляется s = j w : W ¥ ( j w ).

4) Строится АФХ разомкнутой системы.

Для устойчивости АСР необходимо и достаточно, чтобы при увеличении w от 0 до ¥ АФХ W ¥ ( j w ) m раз охватывала точку (-1; 0), где m — число правых корней разомкнутой системы.

Если АФХ проходит через точку (-1; 0), то замкнутая система находится на границе устойчивости.

В случае, если характеристическое уравнение разомкнутой системы A ( s ) = 0 корней не имеет (т.е. m = 0), то критерий, согласно критерию, замкнутая система является устойчивой, если АФХ разомкнутой системы W ¥ ( j w ) не охватывала точку (-1; 0), в противном случае система будет неустойчива (или на границе устойчивости).

7. Показатели качества

Если исследуемая АСР устойчива, то может возникнуть вопрос о том, насколько качественно происходит регулирование в этой системе и удовлетворяет ли оно технологическим требованиям. На практике качество регулирования может быть определено визуально по графику переходной кривой, однако, имеются точные методы, дающие конкретные числовые значения.

Показатели качества разбиты на 4 группы:

1) прямые — определяемые непосредственно по кривой переходного процесса,

2) корневые — определяемые по корням характеристического полинома,

3) частотные — по частотным характеристикам,

4) интегральные — получаемые путем интегрирования функций.

8. Прямые показатели качества

К ним относятся: степень затухания y , перерегулирование s , статическая ошибка ест, время регулирования tp и др.

Рис. 4.4

Предположим, переходная кривая, снятая на объекте, имеет колебательный вид (см. рис. 1.38).

Сразу по ней определяется установившееся значение выходной величины ууст.

Степень затухания y определяется по формуле

,

где А1 и А3 — соответственно 1-я и 3-я амплитуды переходной кривой.

Перерегулирование s = , где ymax — максимум переходной кривой.

Статическая ошибка ест = х — ууст, где х — входная величина.

Время достижения первого максимума t м определяется по графику.

Время регулирования tp определяется следующим образом: Находится допустимое отклонение D = 5% ууст и строится «трубка» толщиной 2 D . Время tp соответствует последней точке пересечения y ( t ) с данной границей. То есть время, когда колебания регулируемой величины перестают превышать 5 % от установившегося значения.

9. Корневые показатели качества

К ним относятся: степень колебательности m , степень устойчивости h и др.

Не требуют построения переходных кривых, поскольку определяются по корням характеристического полинома. Для этого корни полинома откладываются на комплексной плоскости и по ним определяются:

Степень устойчивости h определяется как граница, правее которой корней нет, т.е.

h = min ,

где Re ( si ) — действительная часть корня si .

Степень колебательности m рассчитывается через угол g : m = tg g . Для определения g проводятся два луча, которые ограничивают все корни на комплексной плоскости. g — угол между этими лучами и мнимой осью. Степень колебательности может быть определена также по формуле:

m = min .

10. Частотные показатели качества

Для определения частотных показателей качества требуется построение АФХ разомкнутой системы и АЧХ замкнутой системы.

По АФХ определяются запасы: D A — по амплитуде, D j — по фазе.

Запас D A определяется по точке пересечения АФХ с отрицательной действительной полуосью.

Для определения D j строится окружность единичного радиуса с центром в начале координат. Запас D j определяется по точке пересечения с этой окружностью.

По АЧХ замкнутой системы определяются показатели колебательности по заданию М и ошибке МЕ как максимумы соответственно АЧХ по заданию и АЧХ по ошибке.

Связи между показателями качества.Описанные выше показатели качества связаны между собой определенными соотношениями:

; tp = ; ; M = .

Определение устойчивости САР

В замкнутой САР (рис. IV. 27) заданы (в числовом выражении)

Рис. IV. 27. Функциональная схема замкнутой САР

Определить устойчивость разомкнутой и замкнутой САР и найти kгр.

Для решения поставленной задачи воспользуемся критерием Гурвица. Найдем передаточные функции, а затем и характеристические уравнения разомкнутой и замкнутой систем.

,

где .

Для разомкнутой системы характеристическое уравнение имеет вид

(IV. 3. 11)

,

а для замкнутой САР получается

(IV. 3. 12)

. (IV. 3.13)

Нетрудно понять, что для исследования устойчивости разомкнутой САР применять критерий устойчивости Гурвица излишне, ибо непосредственно из вида характеристического уравнения разомкнутой системы (IV. 3. 11) легко найти, что все корни левые

т. е. разомкнутая САР при всегда положительных Т1, Т2, Т3 устойчива.

Вот по виду характеристического уравнения замкнутой САР (IV. 3. 12) так просто, как в предыдущем случае, определить соответствующие корни не удается, поэтому приходится применить критерий устойчивости Гурвица . При введении обозначений

(IV.3. 14)

характеристическое уравнение замкнутой САР (IV. 3. 13) примет вид

.

В разделе IV. 2. 2 было выяснено, что для САР с характеристическим уравнением третьего порядка для устойчивости необходимо и достаточно при положительных коэффициентах ai( i =0, 1, 2,3) выполнение условия ( IV. 2. 3)

.

Из (IV. 3. 14) видно, условия ai>0 при положительных Т1, Т2, Т3 и k всегда выполняются, а для проверки условия (IV. 2.3) надо в него подставить заданные значения параметров Т1, Т2, Т3 и k и определить знак минора

.

Если этот минор больше нуля, то заданная замкнутая САР устойчива.

Граничный коэффициент усиления kгр найдется из предпоследнего минора, приравненного к нулю

=0.

.

.

Характеристическое уравнение САР имеет вид

,

Определить устойчивость САР.

Так как заданное характеристическое уравнение 4-го порядка имеет один неположительный коэффициент (а4=0), то, согласно условию Стодолы (что в данном случае совпадает с критерием Гурвица) САР не сожжет быть устойчивой, а только либо нейтральной либо неустойчивой.

Запишем заданное характеристическое уравнение в другом виде

.

Видно, что один из корней – нулевой. САР будет находиться на границе устойчивости, если все остальные корни характеристического уравнения левые (при наличии хотя бы одного правого корня САР будет неустойчивой). Эти остальные корни будут левыми, если выполняются условия устойчивости для уравнения

;

а именно (согласно разделу IV. 2. 2)

.

После подстановки значений коэффициентов последнее неравенство

не выполняется, следовательно САР неустойчива.

Передаточная функция разомкнутой САР имеет вид

,

Определить устойчивость замкнутой САР.

Характеристическое уравнение замкнутой САР определяется выражением

,

.

После простого преобразования получим

.

.

Согласно критерию Гурвица для устойчивости системы необходимо, чтобы все ai( i=0, 1, 2, 3, 4) > 0. В нашем же случае , следовательно, замкнутая САР либо неустойчива, либо нейтральна. Для определения, в каком из этих двух состояний находится САР, воспользуемся достаточным условием Гурвица

.

Учитывая что , получим

.

Поскольку >0 (коэффициент усиления k всегда больше нуля), минор никогда не может быть положительным. Значит, данная замкнутая САР всегда неустойчива (обычно говорят – структурно неустойчива), ибо никакими изменениями параметров САР k, Т1, Т2, оставаясь в области их положительных значений, нельзя систему сделать устойчивой. Для придания системе устойчивости надо менять ее структуру.

Переходная функция разомкнутой САР имеет вид

,

где .

Определить постоянную времени Тгр, при которой замкнутая САР находиться на границе устойчивости.

Получим характеристическое уравнение замкнутой САР

.

.

Граница устойчивости определяется из равенства нулю второго минора

.

.

Характеристический полином САР имеет вид

Каково изменение аргумента при изменении частоты ?

Характеристическое уравнение = 0 имеет шесть корней (n=6), из них три правых (m=3). Поэтому, согласно принципу аргумента, получаем

.

Какой из указанных годографов Михайлова замкнутой системы

Рис. IV. 28. Годографы Михайлова для устойчивой, нейтральной и неустойчивой замкнутой систем.

соответствует САР с передаточной функцией

?

Характеристический полином замкнутой системы имеет вид

,

.

Для этого полинома второй минор оказывается равный нулю

,

т.е. замкнутая САР находится на границе устойчивости, что соответствует годографу Михайлова, имеющему вид рис. IV. 28, б.

Определить устойчивость разомкнутой и замкнутой САР и найти kгр.

Запишем передаточные функции разомкнутой

,

а замкнутой САР

Поскольку из характеристического уравнения разомкнутой САР

=0,

следует, что все три его корня

при положительном Т есть левые, то, значит, разомкнутая САР устойчива.

Для определения устойчивости замкнутой САР применим критерий Михайлова.

Характеристический полином замкнутой системы, имеющий третий порядок,

после замены примет вид

.

В этом выражении мы выделили действительную часть и мнимую части

(IV. 3. 15).

Ответ на вопрос – устойчива ли замкнутая САР можно получить по виду годографа Михайлова, зависящего от конкретных значений параметров k и T. Пусть для определенности k =5, T =1 с. Тогда соотношения (IV. 3. 15) примут

Задаваясь численными значениями от 0 до ∞, можно вычислить и для этих значений частоты , а затем построить годограф Михайлова .

1.421.51.73
-0.75-3-6
1.421.125-2

Рис. IV. 29. Годограф Михайлова.

Поскольку годограф Михайлова, начинается на положительном отрезке действительной оси, с ростом частоты от 0 до последовательно в положительном направлении обходит все три квадранта (n=3), то для принятых k =5 и Т =1 с замкнутая САР устойчива.

Определим теперь kгр. В разделе IV. 3. 2 было показано, что на границе устойчивости годограф Михайлова проходит через начало координат, т.е. выполняются условия (IV. 3. 4) .

В нашем случае при k = kгр, Т =1 условия (IV. 3. 4) с учетом (IV. 3. 15) примут вид

Из второго из этих уравнений, отбрасывая неверное решение при котором (а должно быть для границы устойчивости равно нулю), получим

Подставляя это значение граничной частоты в выражение для получим

,

т.е. kгр = 8, как и в примере П. IV. 1.

П. IV. 8. Предыдущую задачу П. IV. 7. решить с помощью критерия Найквиста.

Передаточную функцию разомкнутой системы мы получили в виде

откуда ясно, что все корни характеристического уравнения левые и, значит, разомкнутая система устойчива.

Если провести замену то АФХ разомкнутой системы примет вид

Построим эту характеристику. Найдем сначала и :

.

При

При

Следовательно, качественно АФХ разомкнутой системы Wp(j ) будет выглядеть следующим образом (рис. IV. 30).

Устойчивость системы в замкнутом состоянии зависит от того, охватывает ли критическую точку (-1, j ) или, иными словами, если A( ) > 1, то замкнутая САР неустойчива, при A( ) = 1 САР находится на границе устойчивости и приA( ) -1 , T1=0.1 c, T2=0.02 c. Каков kгр?

Из заданной операторной формы управления системы получим

Wp(j ) =

В отличии от предыдущего примера для разнообразия АФХ разомкнутой САР Ap( ) представим в декартовой форме

Wp(j )=

Для этого нужно освободиться от мнимости в знаменателе выражения для

(IV. 3. 18)

Определим величину . Понятно, что раз этот вектор расположен целиком на действительной оси, его мнимая часть равна нулю

.

= 0

=500 .

При подстановке этого значения частоты в X( , k) получим

отсюда следует, что замкнутая САР неустойчива.

kгр .

П. IV. 10. Предыдущий пример решить с помощью логарифмического критерия устойчивости.

В предыдущем примере мы нашли, что АФХ разомкнутой системы имеет вид

Получим отсюда выражение для АЧХ Ap( ) и ФЧХ разомкнутой системы

(IV. 3. 19)

Имея в виду, что

а сопрягающие частоты

Построим асимптотическую ЛАЧХ и качественный вид ФЧХ разомкнутой системы.

Найдем частоту среза . Из рис. IV. 31 видно, что ЛАЧХ пересекает ось частот на своем втором участке. Поэтому из выражения для точной ЛАЧХ

запишем выражение для ЛАЧХ на втором участке

На частоте среза ср эта асимптота будет равна нулю

.

Значение фазочастотной характеристики (IV.3.19) при будет

.

Следовательно, запас устойчивости по фазе для данной системы будет отрицательным

,

а сама система в замкнутом состоянии неустойчива.

Граничный коэффициент усиления можно найти, исходя из того обстоятельства, что с изменением коэффициента усиления k ФЧХ системы не изменяется, а ЛАЧХ перемещается параллельно самой себе. На рис. IV. 31 показан случай границы устойчивости, когда при частоте , а ЛАЧХ при этой частоте (см. пунктир) пересекает ось абсцисс, т.е. А( )=1. отсюда и можно найти . Для этого найдем сначала частоту , при которой .

Из (IV. 3. 19) получим

.

Из тригонометрии известно, что

.

..

Величине арктангенс равен тогда, когда его аргумент бесконечен

,

а это для возможно в случае, если

.

,

а сама частота =22.36 с -1 .

Величину найдем, приравняв нулю вторую асимптоту новой (пунктирной) ЛАЧХ

Подставим сюда =22.36 с -1 и получим

.

Отсюда .

В предыдущем примере для той же задачи мы получили =60. Это объясняется тем, что в настоящем примере мы пользовались асимптотической (неточной ЛАЧХ), поэтому и здесь отличается от точного значения.

Вопросы для самопроверки.

1. Что понимается под устойчивостью системы?

2. Каковы признаки устойчивости САР?

3. Сформулируйте условие Стодолы.

4. Как найти граничное значение параметра по критерию устойчивости Гурвица.

5. Расскажите о принципе аргумента.

6. Что такое годограф Михайлова? Как он проходит в случае границы устойчивости системы?

7. Сформулируйте критерий устойчивости Найквиста для всех трех видов устойчивости разомкнутой САР.

8. Прокомментируйте связь логарифмического критерия устойчивости с критерием Найквиста.

9. Какие запасы устойчивости Вы знаете?

Дата добавления: 2016-04-14 ; просмотров: 4900 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Корни характеристического уравнения разомкнутой системы

Характер свободного движения всей системы при наличии различных корней определяется суммой свободных составляющих формулы (3.3.), причем система бывает устойчивой, если все вещественные корни отрицательные и комплексные корни имеют отрицательную вещественную часть. Если корни нанести на плоскость комплексного переменного, то можно выделить устойчивые, неустойчивые и нейтральные зоны.

устойчивые

неустойчивые

Линейная САУ устойчива, если корни характеристического уравнения расположены слева от мнимой оси. Система считается нейтральной, если корни принадлежат мнимой оси.

Неустойчивой система считается для случая, когда корни лежат справа от мнимой оси.

Вышеперечисленные условия устойчивости используются для формулирования необходимого условия устойчивости линейных САУ.

Кроме выше записанного необходимое условие устойчивости можно записать, используя известное в математике выражение:

(3.6.)

Подставив в выражение (3.6.) только устойчивые корни характеристического уравнения можно заметить, что после раскрытия скобок в уравнении (3.6.) устойчивой системы все коэффициенты характеристического уравнения будут положительными.

Необходимое условие устойчивости – положительность всех коэффициентов характеристического уравнения. В том случае, если один из коэффициентов отрицателен – линейную систему нельзя считать устойчивой.

Для уравнений первого и второго порядка условие положительности коэффициентов характеристического уравнения является кроме необходимого еще и достаточное условие. Это можно охарактеризовать тем, что уравнения первого и второго порядка просты для нахождения корней. Начиная с третьего и выше порядков характеристические уравнения трудно разрешить в нахождении корней простыми способами вычисления. Поэтому в теории автоматического управления разработаны упрощенные правила – критерии нахождения устойчивости линейных систем.

Существует два вида критериев: алгебраические и частотные. С математической точки зрения все рассматриваемые критерии равнозначны.

§ 3.2.3 Алгебраический критерий устойчивости. Критерий Рауса

Данный критерий устойчивости был разработан в 1878 г . английским математиком Раусом и который был сформулирован в виде некого правила или алгоритма, который можно представить в виде таблицы (матрицы).

Таблица Рауса составляется на основании характеристического уравнения линейной системы вида:

(3.7.)

Покажем эту таблицу:

Порядок заполнения таблицы Рауса:

1) в первой строке таблицы Рауса в порядке увеличения индексов записываются коэффициенты характеристического уравнения (3.7), имеющие четный индекс: ;

2) во второй строке записывают в порядке возрастания индексов коэффициенты характеристического уравнения (3.7.) с нечетными индексами: и т.д.

Любой из остальных коэффициентов таблицы Рауса записывается в соответствии со следующими выражениями:

(3.8.)

к – столбец, i – строка

(3.9.)

Число строк таблицы Рауса равно степени характеристического уравнения + 1 .

Условие устойчивости Рауса: для того, чтобы линейная САУ была устойчивой необходимо и достаточно чтобы коэффициенты первого столбца таблицы Рауса имели один и тот же знак, т.е. при должны быть положительными.

§ 3.2.4 Алгебраический критерий устойчивости. Критерий Гурвица

В 1895 г . немецкий математик Гурвиц разработал алгебраический критерий устойчивости в форме определителей, состоящих из коэффициентов характеристического уравнения (3.7).

В основе рассматриваемого критерия лежит построение главного определителя Гурвица из коэффициентов характеристического уравнения (3.7).

Порядок составления главного определителя Гурвица:

1. Записываем главную диагональ определителя Гурвица, составленную из коэффициентов характеристического уравнения от до ;

2. Вверх от главной диагонали записывают столбцы, составленные из коэффициентов характеристического уравнения с последовательно возрастающими индексами;

3. Вниз от главной диагонали записываем столбцы составленные из коэффициентов характеристического уравнения с последовательно убывающими индексами;

4. Оставшиеся пустые места определителя заполняются нулями, т.е. нули проставляются на места, где должны быть коэффициенты с индексами больше 0 и меньше .

Главный определитель Гурвица имеет вид:

После построения главного определителя Гурвица, в нем очеркиваются диагональные миноры и тем самым получаются определители более низших порядков.

(3.11)

……………….

Критерий устойчивости Гурвица: для того, чтобы система автоматического управления (САУ) была устойчивой необходимо и достаточно, чтобы все определители Гурвица (3.11) имели знаки одинаковые со знаком первого коэффициента характеристического уравнения , т.е. при все определители должны быть положительными:

(3 .12)

В случае, если хоть одно из условий не выполняется, то систему считают неустойчивой.

Раскрывая все определители Гурвица можно для уравнений 1-го, 2-го, 3-го и 4-го порядков записать более простую форму критерия устойчивости. Такая форма записи получила название следствия из критерия Гурвица или ее называют критерием Леера-Шепорда.

1) Для характеристического уравнения 1-го порядка:

необходимым и достаточным является, чтобы:

,

2) Для характеристического уравнения 2-го порядка:

необходимым и достаточным является, чтобы:

3) Для характеристического уравнения 3-го порядка:

необходимым и достаточным является, чтобы:

4) Для характеристического уравнения 4-го порядка:

необходимым и достаточным является, чтобы:

§ 3.2.5 Частотный критерий устойчивости. Критерий Михайлова

Все частотные критерии, в том числе и критерий Михайлова, основаны на хорошо известном из курса высшей математики «Принципа аргумента», который позволяет отобразить необходимое условие устойчивости на частотной плоскости.

Все элементарные вектора изображаются на комплексной плоскости. Задаваясь изменением частоты от до будем наблюдать поворот единичных векторов. Анализ их изменения показывает, что устойчивые вектора поворачиваются отлично от неустойчивых. Такое наблюдение позволило сделать четкий вывод о значении угла поворота устойчивой системы в зависимости от числа правых и левых корней (левыми считаются устойчивые корни, а правыми – неустойчивые корни).

Этот частотный критерий устойчивости был сформулирован в 1938 г . советским ученым Михайловым и является интерпретацией принципа аргумента, позволяя судить об устойчивости системы наблюдая за поведением кривой называемой кривой Михайлова.

За основание построения кривой берется характеристический полином вида:

Произведя замену получим характеристический полином Михайлова:

(3.18)

При изменении частоты вектор будет изменяться как по величине, так и по направлению, описывая своим окончанием некоторую кривую, называемую кривой Михайлова или годографом Михайлова.

Для устойчивых систем кривая Михайлова начинаясь при на вещественной положительной полуоси, при увеличении частоты , описывает относительно начала координат некую линию.

Критерий Михайлова: для того, чтобы САУ была устойчивой, необходимо и достаточно, чтобы кривая или годограф Михайлова при изменении начинаясь при на вещественной полуоси, обходила только против часовой стрелки последовательно n -квадрантов комплексной плоскости, нигде не обращаясь в нуль ( n – степень характеристического полинома (уравнения)).

Нейтральные САУ (граница устойчивости):

Анализируя кривую Михайлова можно вывести следствие из него: при прохождении кривой Михайлова числа квадрантов комплексной плоскости, происходит последовательное поочередное пересечение действительной и мнимой соей, т.е.:

Значение частот при которых происходит пересечение кривой с вещественной или мнимой осью, должны является корнями уравнений (3.20) и (3.21), причем корни уравнения (3.21), а — корни уравнения (3.20). При этом корень с большим индексом по значению, также больше корня с меньшим индексом, то обязательно должно выполняться следующее неравенство:

В связи с выше записанным следствие кривой Михайлова можно сформулировать следующим образом: САУ будет устойчивой тогда и только тогда, когда вещественная и мнимая функции Михайлова приравненные к нулю, имеют все действительные и перемеживающиеся корни, причем общее число корней равно n и при выполняется следующее условие:

Для реализации этого следствия определяются только корни уравнения . Перемежаемость корней можно проверить подставив в найденные корни . Знаки значений при подстановке возрастающих по значению корней должны чередоваться (+ — + — + и т.д.). Если что-то не так – система является неустойчивой.

§ 3.2.6 Частотный критерий. Критерий Найквиста

Этот критерий разработан в 1923 г . американским ученым Найквистом. Он позволяет судить об устойчивости замкнутой системы по поведению АФЧХ разомкнутой системы.

Вектор разомкнутой системы при изменении частоты от до меняется по величине и фазе.

Кривая, описываемая окончанием этого вектора есть АФЧХ разомкнутой системы, причем следует отметить, что вид этой характеристики симметричен относительно начала координат, т.е.

Для доказательства критерия Найквиста используют дополнительную функцию вида:

Причем в знаменателе такой функции будет записан характеристический полином разомкнутой системы, а в числителе характеристический полином замкнутой системы:

В случае замены оператора Лапласа р на , получим частотную функцию вида:

Пусть характеристическое уравнение замкнутой системы имеет — правых корней и — левых корней, а характеристическое уравнение разомкнутой системы имеет правых и левых корней (под правыми корнями подразумевают корни лежащие справа от мнимой оси комплексной плоскости и определяющие неустойчивость функционирования системы).

При рассмотрении этого критерия так же работает принцип аргумента, который определяет, что устойчивой система является, когда вектор повернется на соответствующий угол.

Разомкнутая система являющееся неустойчивой и имеющая правых корней будет определять, что замкнутая система устойчивая тогда и только тогда, когда АФЧХ вспомогательной функции при изменении частоты от до охватывает начало координат в положительном направлении — раз.

Найквистом было отмечено, что движение вектора вокруг начала координат равно числу оборотов вектора вокруг точки с координатами .

Критерий устойчивости Найквиста: если разомкнутая система автоматического управления неустойчива, то для того чтобы замкнутая система была устойчивой необходимо и достаточно, чтобы АФЧХ разомкнутой системы при изменении частоты от до охватывала точку с координатами в положительном направлении — раз (где число правых корней характеристического уравнения разомкнутой системы).

При сложной форме характеристик может возникнуть затруднение при определении числа оборотов вокруг критической точки с координатами .

Для анализа поведения таких характеристик применяют «правило переходов» Ципкина. Назовем переход АФЧХ через действительную ось слева от точки при возрастании положительным (если характеристика пересекает вещественную ось сверху-вниз), а справа от точки отрицательным. Также отрицательным считается переход слева от точки , но совершённым при пересечении вещественной оси снизу-вверх. В этом случае, если АФЧХ начинается на отрезке при или заканчивается на нем при , считается, что АФЧХ совершила пол перехода.

Критерий Найквиста для рассматриваемого варианта: если разомкнутая САУ неустойчива, то для того чтобы замкнутая система стала устойчива необходимо и достаточно, чтобы разность между положительным и отрицательным переходами АФЧХ разомкнутой системы через отрезок вещественной оси при изменении от до была равна — раз.

Критерий Найквиста для случая, когда разомкнутая система устойчива имеет следующую формулировку: если САУ разомкнутая устойчива, то замкнутая система будет устойчивой, если АФЧХ разомкнутой системы не охватывает точку с координатами .

Достоинство критерия Найквиста заключается в том, что его можно использовать даже если неизвестны структуры отдельных звеньев системы, достаточно получить АФЧХ. Кроме того, рассматриваемый критерий позволяет анализировать устойчивость систем обладающих запаздыванием.

§ 3.2.7. Частотный критерий устойчивости – логарифмический частотный критерий

Критерий Найквиста позволяет судить от устойчивости системы по логарифмическим частотным характеристикам, т.е. можно заметить, что критерий Найквиста можно анализировать используя простые с точки зрения построения логарифмические частотные характеристики. Поэтому рассматриваемый критерий часто называют критерием Найквиста в логарифмической форме.

Передаточная функция разомкнутой системы обычно представляет собой произведение элементарных динамических звеньев, асимптотические характеристики которых представляют собой ломаные прямые линии.

Устойчивость с использованием логарифмического критерия позволяет построив совмещено ЛАЧХ и ЛФЧХ разомкнутой системы судить об устойчивости замкнутой системы.

Замкнутая система автоматического управления устойчива, если при соответствующая ЛФЧХ проходит таким образом, что фаза не превосходит значения .

1) система устойчивая в разомкнутом состоянии будет устойчивой и в замкнутом, если точка А ЛФЧХ определяемая фазой соответствует области отрицательных значений логарифмической амплитуды ;

2) САУ неустойчивая в разомкнутом состоянии будет устойчива в замкнутой, если при изменении от 0 до разность чисел положительных и отрицательных переходов ЛФЧХ через значение лежащих в области положительных равна половине числа корней , где — число правых корней характеристического уравнения разомкнутой системы.

Следствие к первому случаю: САУ будет устойчивая в замкнутом состоянии, если ЛФЧХ неустойчивой разомкнутой системы при будет проходить через ординату -180º одинаковое число раз как в положительном, так и отрицательном направлениях.

§ 3.2.8. Запасы устойчивости

При проектировании систем автоматики стремятся обеспечить их устойчивость с некоторой гарантией, чтобы изменение параметров системы в процессе ее работы не могли привести к неустойчивости системы. Для реализации такого тезиса необходимо, чтобы система обладала определенным запасом устойчивости. Запас устойчивости определяет удаленность параметров системы от границы устойчивости.

Положение системы на границе устойчивости можно определить, используя критерий устойчивости. Качественную характеристику удаления системы от границы устойчивости дают критерии Гурвица и Михайлова. Четкую количественную характеристику запаса устойчивости как по амплитуде, так и по фазе дает критерий Найквиста и логарифмический критерий.

В соответствии с критерием Найквиста система находится на границе устойчивости, если годограф Найквиста проходит через точку с координатами . Такая граница носит название колебательной границы устойчивости. В логарифмических координатах такое действие может произойти, если частота среза совпадает с точкой пересечения ЛФЧХ значения — 180º.

Покажем использование критерия Найквиста для нахождения запаса устойчивости по фазе и амплитуде:

— запас по фазе.

Запас устойчивости по модулю может быть в данном случае рассчитан как:

Значение модуля АФЧХ разомкнутой системы при зависит от значения коэффициента усиления (передачи). Поэтому часто запас устойчивости по модулю называют запасом по усилению и определяют как отношение предельного коэффициента передачи к текущему:

,

где — значение коэффициента, при котором модуль частотной передаточной функции разомкнутой системы равен единице и система находится на границе устойчивости. В том случае если , то система уходит за пределы устойчивости.

Запас устойчивости по фазе измеряется по дуге окружности единичного радиуса между отрицательной частью и ближайшей точкой пересечения окружности с годографом Найквиста.

Определение устойчивости по логарифмическим частотным характеристикам может быть осуществлено достаточно простым способом. Необходимо на совмещенных логарифмических частотных характеристиках построить вертикальные проекции между осью абсцисс и значением -180º которые проведены через точки и А. В результате чего получим:

— запас по амплитуде.

Запасы устойчивости влияют не только на работоспособность (устойчивость) системы, но также характеризуют качество работы системы. В реальных системах обычно = 15…20 дБ, = 30…50º.

§ 3.2.9. Устойчивость систем обладающих запаздыванием

Значительное число объектов сельскохозяйственного назначения описываются математической моделью, в состав которой входит звено транспортного запаздывания, при этом общая передаточная функция такой системы состоит из произведения передаточной функции линейной части системы и передаточной функции звена транспортного запаздывания

Частотная передаточная функция в данном случае может быть записана в виде:

,

где — АЧХ линейной части;

— ФЧХ системы с учетом звена транспортного запаздывания.

Звено чистого запаздывания не изменяет амплитуду АФЧХ, но создает дополнительный отрицательный сдвиг по фазе, зависящий от частоты . Устойчивость САУ с запаздыванием наиболее просто определить по критерию Найквиста, при этом АФЧХ такой системы строится следующим образом: сначала строят годограф , а затем каждую i -тую точку годографа доворачивают на угол по часовой стрелке.

Оценку устойчивости систем с запаздыванием можно также выполнить используя логарифмический частотный критерий.

Очень часто анализируя устойчивость рассмотренных систем необходимо бывает установить значение запаздывания при котором система находится на границе устойчивости. Такое время носит название критического времени запаздывания и оно определяется из следующего выражения:

§ 3.3. Качества работы САУ

§ 3.3.1. Общие положения о качестве работы

Факт устойчивости или неустойчивости САУ говорит лишь о том, что переходная или свободная составляющая процесса регулирования с течением времени расходится или затухает, но такой анализ не дает ответа на такие важные вопросы как: быстрота затухания переходного процесса, форма кривой процесса регулирования и т.д. Поэтому следует отметить, что теория устойчивости является необходимым, но не достаточным условием практической пригодности САУ. Любая такая система кроме устойчивости должна еще обладать и требуемым качеством работы. Качество работы систем автоматики характеризует точность ее работы как в установившемся так и переходном режимах. Иными словами можно отметить, что качество работы системы автоматики характеризует точность воспроизведения системой задающего воздействия.

Проблема качества систем автоматики может быть поставлена как задача анализа, т.е. оценка уже спроектированной САУ или как задача синтеза, т.е. проектирование САУ заранее оговоренными показателями качества. При рассмотрении таких задач будем полагать, что САУ описывается системой дифференциальных уравнений с постоянными коэффициентами. При изменении воздействия на входе системы выходную величину можно записать:

,

где — решение дифференциального уравнения, описывающего движение САУ;

— общее решение, соответствующее однородному дифференциальному уравнению. В случае отсутствия кратных корней зависит от вида корней характеристического уравнения;

— вынужденная или установившаяся составляющая переходного процесса, обуславливаемая законом изменения .

Качество работы системы автоматики можно оценить по виду переходного процесса и по его составляющим и . В связи с чем различают две группы показателей качества:

1) показатели качества переходного процесса ;

2) показатели качества, характеризующие вынужденную составляющую и определяющие точность воспроизведения предписанной величины.

Показатели качества, определяемые непосредственно по кривой переходного процесса называют прямыми оценками качества, косвенные оценки качества не требуют нахождение кривой переходного процесса. Косвенные методы разделяют на: корневые, интегральные и частотные.

§ 3.3.2. Оценка качества регулирования при гармонических воздействиях

При гармонических воздействиях качество системы принято оценивать по амплитудо-фазовой, амплитудо-частотной и логарифмическим частотным характеристикам.

Для оценки качества переходных процессов системы можно использовать следующие величины: показатель колебательности М, резонансная (собственная частота) , полоса пропускания системы , частота среза , запасы устойчивости по модулю и по фазе.

Показатель колебательности М – это отношение максимального значения АЧХ замкнутой системы к ее значению при

при .

Показатель колебательности характеризует склонность системы к колебаниям. Чем выше М, тем менее качественная система при прочих равных условиях.

Частоту , при которой АЧХ замкнутой системы имеет максимум, называют резонансной частотой системы, т.е. на этой частоте гармонические колебания проходят через систему с наименьшим усилием.

Полоса пропускания системы – это интервал частот от до , при котором выполняется условие:

,

или при величина . Полоса пропускания не должна быть слишком широкой, иначе система будет воспроизводить высокочастотные помехи.

Частота среза — частота, при которой АЧХ системы принимает значение равное 1, т.е. . Эта частота косвенно характеризует длительность переходного процесса. Чем меньше частота среза, тем хуже быстродействие системы

,

если переходный процесс имеет одно-два колебания, то время достижения переходной характеристикой первого максимума

Склонность системы к колебаниям характеризуется величинами ее запасов устойчивости по модулю и по фазе. Запасы устойчивости рассчитывают по АФЧХ и ЛЧХ. В хорошо демпфированных системах запас устойчивости по амплитуде колеблется в пределах от 6 до 20 дБ, а запас по фазе – от 30 до 60º.

Т.к. рассмотренные выше показатели косвенно определяют быстродействие, перерегулирование и т.п., то они могут быть использованы и для расчета систем, находящихся под воздействием непериодических возмущений.


источники:

http://helpiks.org/7-85660.html

http://feklistovstudio.narod.ru/12.htm